4.7 Article

Expectations and violations: Delineating the neural network of proactive inhibitory control

Journal

HUMAN BRAIN MAPPING
Volume 34, Issue 9, Pages 2015-2024

Publisher

WILEY
DOI: 10.1002/hbm.22047

Keywords

cognitive control; response inhibition; stop-signal; anticipation; probabilistic; basal ganglia; striatum; presupplementary motor area; anterior cingulated; midbrain; inferior frontal cortex

Funding

  1. Netherlands Organization for Scientific Research

Ask authors/readers for more resources

The ability to stop a prepared response (reactive inhibition) appears to depend on the degree to which stopping is expected (proactive inhibition). Functional MRI studies have shown that activation during proactive and reactive inhibition overlaps, suggesting that the whole neural network for reactive inhibition becomes already activated in anticipation of stopping. However, these studies measured proactive inhibition as the effect of stop-signal probability on activation during go trials. Therefore, activation could reflect expectation of a stop-signal (evoked by the stop-signal probability cue), but also violation of this expectation because stop-signals do not occur on go trials. We addressed this problem, using a stop-signal task in which the stop-signal probability cue and the go-signal were separated in time. Hence, we could separate activation during the cue, reflecting expectation of the stop-signal, from activation during the go-signal, reflecting expectation of the stop-signal or violation of that expectation. During the cue, the striatum, the supplementary motor complex (SMC), and the midbrain activated. During the go-signal, the right inferior parietal cortex (IPC) and the right inferior frontal cortex (IFC) activated. These findings suggest that the neural network previously associated with proactive inhibition can be subdivided into two components. One component, including the striatum, the SMC, and the midbrain, activated during the cue, implicating this network in proactive inhibition. Another component, consisting of the right IPC and the right IFC, activated during the go-signal. Rather than being involved in proactive inhibition, this network appears to be involved in processes associated with violation of expectations. Hum Brain Mapp 34:2015-2024, 2013. (c) 2011 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available