4.3 Article

Synthesis and Spectroscopic Characterization of Fluorophore-Labeled Oligospiroketal Rods

Journal

HELVETICA CHIMICA ACTA
Volume 96, Issue 11, Pages 2046-2067

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/hlca.201200616

Keywords

Molecular rods; Forster resonance energy transfer (FRET); Carboxyfluorescein; Carboxyrhodamine; Pyrene; Perylene; Fluorescence

Funding

  1. Deutsche Forschungsgemeinschaft [We1850-7/1-2]

Ask authors/readers for more resources

Fluorescence probes consisting of well-established fluorophores in combination with rigid molecular rods based on spirane-type structures were investigated with respect to their fluorescence properties under different solvent conditions. The attachment of the dyes was accomplished by 1,3-dipolar cycloaddition between alkynes and azides (click' reaction) and is a prime example for a novel class of sensor constructs. Especially, the attachment of two (different) fluorophores on opposite sides of the molecular rods paves the way to new sensor systems with less bulky (compared to the conventional DNA- or protein-based concepts), nevertheless rigid spacer constructs, e.g., for FRET-based sensing applications. A detailed photophysical characterization was performed in MeOH (and in basic H2O/MeOH mixtures) for i) rod constructs containing carboxyfluorescein, ii) rod constructs containing carboxyrhodamine, iii) rod constructs containing both carboxyfluorescein and carboxyrhodamine, and iv) rod constructs containing both pyrene and perylene parts. For each dye (pair), two rod lengths with different numbers of spirane units were synthesized and investigated. The rod constructs were characterized in ensemble as well as single-molecule fluorescence experiments with respect to i) specific roddye and ii) dyedye interactions. In addition to MeOH and MeOH/NaOH, the rod constructs were also investigated in micellar systems, which were chosen as a simplified model for membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available