4.7 Article

An optopneumatic piston for microfluidics

Journal

LAB ON A CHIP
Volume 15, Issue 5, Pages 1335-1342

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4lc01389a

Keywords

-

Funding

  1. Conacyt-Mexico [154464]
  2. Catedras Conacyt

Ask authors/readers for more resources

We demonstrate an optopneumatic piston based on glass capillaries, a mixture of PDMS-carbon nanopowder, silicone and mineral oil. The fabrication method is based on wire coating techniques and surface tension-driven instabilities, and allows for the assembly of several pistons from a single batch production. By coupling the photothermal response of the PDMS-carbon mixture with optical excitation via an optical fiber, we demonstrate that the piston can work either as a valve or as a reciprocal actuator. The death volume of the pistons was between 0.02 and 1.56 mu L and the maximum working frequency was around 1 Hz. Analysis of the motion during the expansion/contraction of the piston shows that this machine can be described by a phenomenological equation analogous to the Kelvin-Voight model used in viscoelasticity, having elastic and viscous components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available