4.4 Article

Preparation, structure and adsorption properties of synthesized multiwall carbon nanotubes for highly effective removal of maxilon blue dye

Journal

KOREAN JOURNAL OF CHEMICAL ENGINEERING
Volume 32, Issue 12, Pages 2456-2462

Publisher

KOREAN INSTITUTE CHEMICAL ENGINEERS
DOI: 10.1007/s11814-015-0078-y

Keywords

Multiwall Carbon Nanotube; Hydrothermal; Adsorption; Maxilon Blue Dye

Funding

  1. Babylon University, College for Women science-chemistry department, Hilla /Iraq

Ask authors/readers for more resources

Multiwall carbon nanotubes (MWCNTs) have been hydrothermally prepared using polyethylene glycol as the carbon source. Herein, new MWCNTs composites with high adsorption capacity were prepared and applied as efficient adsorbents for adsorption of maxilon blue dye (GRL) from aqueous solution. The morphologies of the MWCNTs were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform-infrared (FT-IR) spectroscopy. The adsorption property of maxilon blue (GRL) from aqueous solution onto MWCNTs was studied as a function of mass dosage, pH of solution, initial dye concentration and temperature. The adsorption of GRL depends on the initial pH of the solution with maximum uptake occurring at about pH 10. The maximum adsorption capacity of prepared MWCNTs was 260.7mg/g. Langmuir, Freundlich and Temkin isotherms were applied to fit the experimental data. The Freundlich equilibrium isotherm fitted well the experimental data indicating the homogeneity of the adsorbent surface sites. Thermodynamics parameters were studied the changes in free energy (Delta G(0)), enthalpy (Delta H-0) and entropy (Delta S-0) during adsorption. It is noticeable that the adsorption of GRL dye onto MWCNTs was a spontaneous and endothermic process and indicates that the adsorption is favored at high temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available