246 Views · 98 Downloads · ★★★★★ 5.0

Obtaining CBMS Process Parameters by Numerical Modeling and Simulation

PUBLISHED July 21, 2022 (DOI: https://doi.org/10.54985/peeref.2207p8491165)



Marcelo Rubén Pagnola1 , Francisco Barcelo2 , Jairo Vivero3
  1. Universidad de Buenos Aires
  2. Universidad Argentina de la Empresa
  3. Universidad Tecnológica de Bolívar

Conference / event

Encuentro Argentino y Latinoamericano de Ingeniería CADI / CLADI / CAEDI, October 2021 (Virtual)

Poster summary

The application of FeSiB family magnetic materials in the electrical or electronic industry has significantly increased owing to the development of amorphous and nanocrystalline metallic glasses using melt spinning and chill block melt spinning technology. With this technique, a thin ribbon is obtained owing to the jet of liquid metal expelled from a casting nozzle at high pressure and temperature over the outer surface of the wheel. As soon as the material jet is expelled by the nozzle, turbulence can occur in the solidification puddles. This generates defects and cracks in the solidification profile. In this study, numerically simulated ad hoc events in OPENFOAM® are comparatively examined using a real process.


CBMS, Melt spinning, Simulation, OPENFOAM, Volume of fluids, Turbulence

Research areas

Computer and Information Science, Material Sciences, Electrical Engineering, Energy Engineering, Nanoengineering


  1. Suzuki, K.; Makino, A.; Inoue, A.; Masumoto, T. (1991). Soft magnetic properties of nanocrystalline bcc Fe‐Zr‐B and Fe‐M‐B‐Cu (M=transition metal) alloys with high saturation magnetization, Journal of Applied Physics 70, 6232.
  2. Muraca, D.; Silveyra, J.; Pagnola, M.; Cremaschi, V. (2009). Nanocrystals magnetic contribution to FINEMET-type soft magnetic materials with Ge addition, Journal of Magnetism and Magnetic Materials, 321(21), 3640-3645.
  3. Nomura, Y.; Uzuhashi, J.; Tomita, T.; Takahashi, T.; Kuwata, H.; Abe, T.; Ohkubo, T.; Hono, K. (2021). Heating rate dependence of coercivity and microstructure of Fe–B–P–Cu nanocrystalline soft magnetic materials, Journal of Alloys and Compounds, Volume 859,157832.
  4. Pagnola, M.; Preckel, S.; Alvarez Barrios, H. (2012). Development of Numeric Simulation Model for Production Control a Melt Spinning Process of Amorphous Ribbon Used in Transformer Cores, Lecture Notes in Information Technology, Vol.1, 393-399.
  5. Pagnola, M.; Malmoria, M.; Barone, M.; Sirkin, H. (2014). Analysis of Fe78Si9B13 (%at.) ribbons of noncommercial scrap materials produced by melt spinning equipment, Multidiscipline Modelling in Materials and Structures, Emerald, 10(4), 511- 524.
  6. Marrugo, A.; Barone, M.; Useche, J.; Pagnola, M. (2016). Experimental investigation of high-speed melt spinning by means of digital image analysis, Optics Info Base Conference Papers. Guanajuato: OSA. The Optical Society, Paper LTh2C.5. Recuperado de: https://doi.org/10.1364/LAOP.2016.LTh2C.5
  7. Napolitano, R.E.; Meco, H. (2004). The role of melt pool behavior in free-jet melt spinning. Metall. Mater Trans A 35, 1539-1553.
  8. Pagnola, M.; Malmoria, M.; Barone, M. (2016). Biot Number behaviour in the Chill Block Melt Spinning (CBMS) Process, APPLIED THERMAL ENGINEERING.PERGAMON-ELSEVIER SCIENCE LTD, 103(1), 807- 811.
  9. Barone, M.; Barceló, F.; Useche, J.; Larreteguy, A.; Pagnola, M. (2017). Análisis y simulación del modelo térmico y viscoso del proceso de Melt Spinning, Revista UIS. Editorial de Universidad Industrial de Santander, 17(1), 185-190.
  10. Wang, C. (2010) Numerical Modeling of Free Surface and Rapid Solidification for Simulation and Analysis of Melt Spinning. Iowa State University Ames. Iowa, 1-138.
  11. Barone, M.; Barceló, F.; Pagnola, M.; Larreteguy, A.; Marrugo, A.; Useche J. (2020). A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM®, International Journal of Thermal Sciences, Volume 150,106221.
  12. Carpenter, J.; Steen, P. (1997). Heat transfer and solidification in planar-flow melt-spinning: high wheel speeds, Int. J. Heat Mass Transf., 40 (9), 1993-2007.
  13. Pagnola, M.; Barone, M.; Malmoria, M.; Sirkin, H. (2015). Influence of z/w relation in Chill Block Melt Spinning (CBMS) process and analysis of thickness in ribbons, Multidiscipline Modelling in Materials and Structures, Emerald, 11(1), 23-31.
  14. Wang, G.; Matthys, E. (2002). Mathematical simulation of melt flow, heat transfer and non-equilibrium solidification in planar flow casting, Model. Simul. Mater. Sci. Eng., 10 (1), 35–55.
  15. Tkatch, V.I.; Limanovskii, A.I.; Denisenko, S.N.; Rassolov, S.G. (2002). The effect of the melt-spinning processing parameters on the rate of cooling, Materials Science and Engineering, A323 (1-2), 91-96.
  16. Pozo Lopez, G.; Fabietti, L.M.; Condo, A.M.; Urreta, S.E. (2010). Microstructure and soft magnetic properties of Finemet type ribbons obtained by twin-roller melt-spinning, Journal of magnetism and Magnetic Materials, 322(20), 3088-3093.
  17. Bussman, M.; Mostaghimi, J.; Kirk, D.W.; Graydon J.W. (2002). A numerical study of steady flow and temperature field within a melt spinning puddle, Int. J. Heat Mass Transf., 45 (19), 3997- 4010.
  18. Dhadwal, R. (2011). Numerical simulation of two-phase melt spinning model, Appl. Math. Model. 35 (6), 2959–2971.


  1. UBACyT (No. 20020190100046BA)

Supplemental files

  1. Video that accompanies poster.   Download

Additional information

Competing interests
None declared.
Data availability statement
The datasets generated during and / or analyzed during the current study are available from the corresponding author on reasonable request.
Creative Commons license
Copyright © 2022 Pagnola et al. This is an open access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Pagnola, M., Barcelo, F., Vivero, J. Obtaining CBMS Process Parameters by Numerical Modeling and Simulation [not peer reviewed]. Peeref 2022 (poster).
Copy citation

Find the ideal target journal for your manuscript

Explore over 38,000 international journals covering a vast array of academic fields.


Ask a Question. Answer a Question.

Quickly pose questions to the entire community. Debate answers and get clarity on the most important issues facing researchers.

Get Started