4.8 Article

The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody

期刊

BIOMATERIALS
卷 31, 期 35, 页码 9212-9220

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.08.040

关键词

Collagen; EGFR neutralizing antibody; Spinal cord injury; Nerve regeneration

资金

  1. National Natural Science Foundation of China [30930032, 30688002]
  2. Chinese Academy of Sciences [KSCX2-YW-R-133]
  3. Ministry of Science and Technology of China [2006CB943601]
  4. K.C. Wang Education Foundation

向作者/读者索取更多资源

In the treatment of spinal cord injury, implantation of scaffolding biomaterials and the addition of neuroprotective factors will promote neural regeneration. It has been demonstrated in our previous work that linear ordered collagen scaffold (LOCS) will bridge neural regeneration after the injury of spinal cord hemisection, and BDNF fused with a collagen binding domain (CBD-BDNF) can bind to collagen specifically to exert the neuroprotective effect. Besides neuroprotective factors, the lack of axon regeneration of the injured spinal cord has been attributed partially to regeneration inhibitors such as myelin associated proteins and chondroitin sulfate proteoglycans (CSPGs). Epidermal growth factor receptor (EGFR) activation is downstream of the signaling pathways of these inhibitors. Here, the monoclonal antibody, 151IgG that inhibits signaling of EGFR was used to neutralize EGFR. 151IgG was cross-linked to LOCS and CBD-BDNF bound to LOCS to make a triple-functional biomaterial for neural regeneration (bridging, prompting growth and neutralizing growth inhibitors). This triple-functional device was tested in a 6 mm transected SCI model. Results showed that this collagen scaffold with the addition of 151IgG and CBD-BDNF provided effective bridging and stimulation effects for neural regeneration, recovery of electrical transmission of synapses and preventing the formation of glial scars in the extreme transected rat SCI model. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Engineering, Biomedical

A novel capsid-XL32-derived adeno-associated virus serotype prompts retinal tropism and ameliorates choroidal neovascularization

Lin-Lin Luo, Jie Xu, Bing-Qiao Wang, Chen Chen, Xi Chen, Qiu-Mei Hu, Yu-Qiu Wang, Wan-Yun Zhang, Wan-Xiang Jiang, Xin-Ting Li, Hu Zhou, Xiao Xiao, Kai Zhao, Sen Lin

Summary: A novel AAV serotype, AAVYC5, introduced in this study, showed more efficient transduction into multiple retinal layers compared to AAV2, and enabled successful delivery of anti-angiogenic molecules in mice and non-human primates.

BIOMATERIALS (2024)