4.6 Article

Microbial metagenome-assembled genomes of the Fram Strait from short and long read sequencing platforms

期刊

PEERJ
卷 9, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.11721

关键词

Arctic; Microbiology; Metagenomics; Metagenome-assembled genomes; Microbial ecology

资金

  1. Max Planck Society

向作者/读者索取更多资源

The impacts of climate change on the Arctic Ocean are becoming increasingly apparent, particularly in terms of heat and freshwater exchange between the Arctic and North Atlantic Oceans. The expanding influence of the North Atlantic in the Arctic has accelerated sea-ice decline, weakened water column stability, and facilitated the northward movement of temperate species.
The impacts of climate change on the Arctic Ocean are manifesting throughout the ecosystem at an unprecedented rate. Of global importance are the impacts on heat and freshwater exchange between the Arctic and North Atlantic Oceans. An expanding Atlantic influence in the Arctic has accelerated sea-ice decline, weakened water column stability and supported the northward shift of temperate species. The only deep-water gateway connecting the Arctic and North Atlantic and thus, fundamental for these exchange processes is the Fram Strait. Previous research in this region is extensive, however, data on the ecology of microbial communities is limited, reflecting the wider bias towards temperate and tropical latitudes. Therefore, we present 14 metagenomes, 11 short-read from Illumina and three long-read from PacBio Sequel II, of the 0.2-3 mm fraction to help alleviate such biases and support future analyses on changing ecological patterns. Additionally, we provide 136 species-representative, manually refined metagenome-assembled genomes which can be used for comparative genomics analyses and addressing questions regarding functionality or distribution of taxa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据