4.6 Article

Luminescence of Mn4+ activated Li4Ti5O12

期刊

JOURNAL OF LUMINESCENCE
卷 228, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jlumin.2020.117646

关键词

Red phosphor; Mn4+ emission; LTO; Luminescence thermometry

类别

资金

  1. Ministry of Education, Science and Technological development of the Republic of Serbia
  2. Chongqing Recruitment Program for 100 Overseas Innovative Talents [2015013]
  3. Program for the Foreign Experts by Chongqing University of Posts and Telecommunications (CQUPT) [W2017011]
  4. Wenfeng High-end Talents Project by Chongqing University of Posts and Telecommunications (CQUPT) [W2016-01]
  5. Estonian Research Council grant [PUT PRG111]
  6. European Regional Development Fund [TK141]
  7. NCN project [2018/31/B/ST4/00924]
  8. National Recruitment Program of High-end Foreign Experts by Chongqing University of Posts and Telecommunications (CQUPT), P.R. China [GDT20185200479]

向作者/读者索取更多资源

This work demonstrates the luminescence of Mn4+ activated cubic spinel Li4Ti5O12 (LTO) powders. One-step solid-state method was used to obtain eleven samples with different quantities of Mn4+. The deep red emis- sion centered at around 696 nm originates from E-2(g) -> (4)A(2g), spin forbidden electronic transitions from 3 d(3) electron configuration of Mn4+ ion. The concentration quenching of emission is also observed in values of excited-state lifetimes, ranging from 212 mu s to 143 mu s. Such emission in the red spectral region which can be excited by blue light is suitable for the plant growth LEDs. The exchange charge model (ECM) of crystal field was used to calculate the Mn4+ energy levels in the LTO host. The temperature dependence of the Mn4+ emission in LTO was measured in the 10-350 K temperature range. Excited-state lifetime strongly changes with temperature. A very large value of relative sensitivity of 2.6% K-1 is found at 330 K, which facilitates temperature measurements with the temperature resolution of about 0.26 K. A low concentration of Nb5+ co-doping sensitizes the Mn4+ optical center effectively showing a relative increment of emission intensity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Luminescence of Ti-Sapphire coatings prepared by plasma electrolytic oxidation and their application in temperature sensing

Aleksandar Ciric, Stevan Stojadinovic, Miroslav D. Dramicanin

Summary: 15 mu m thick Ti-Sapphire coatings were successfully synthesized using plasma electrolytic oxidation (PEO) method on pure aluminum substrates with the addition of TiO2 particles. The coatings exhibit typical Ti-Sapphire photoluminescence features and show potential as multifunctional barrier-level optical temperature sensor materials.

JOURNAL OF ALLOYS AND COMPOUNDS (2022)

Article Physics, Applied

Luminescence intensity ratio squared-A new luminescence thermometry method for enhanced sensitivity

Aleksandar Ciric, Tukasz Marciniak, Miroslav D. Dramicanin

Summary: In this study, a novel temperature readout method utilizing thermalized energy levels in trivalent lanthanide ion-activated phosphors is proposed to overcome the sensitivity limitation of ratiometric luminescence thermometers. The method, called luminescence intensity ratio squared (LIR2), combines the advantages of dual-excitation single emission band ratiometric (SBR) and conventional luminescence intensity ratio (LIR) techniques. The LIR2 method demonstrates significantly enhanced thermometric performance compared to SBR and LIR techniques over a wide temperature range (300-850 K).

JOURNAL OF APPLIED PHYSICS (2022)

Article Materials Science, Multidisciplinary

Highly sensitive temperature reading from intensity ratio of Eu3+ And Mn4+emissions in Y3Al5O12 nanocrystals

Jovana Peris, Vesna Dordevic, Zoran Ristic, Mina Medic, Sanja Kuzman, Zeljka Antic, Miroslav D. Dramicanin

Summary: The potential of Eu3+, Mn4+ co-doped YAG for dual-activated luminescence intensity ratio thermometry is investigated. The samples were prepared and characterized, and the optimal concentrations of Mn4+ and Eu3+ were determined. Sensitivities were calculated using luminescence intensity ratio as the indicator of temperature.

MATERIALS RESEARCH BULLETIN (2022)

Article Crystallography

Influence of Au, Ag, and Cu Adatoms on Optical Properties of TiO2 (110) Surface: Predictions from RT-TDDFT Calculations

Yin-Pai Lin, Dmitry Bocharov, Eugene A. Kotomin, Mikhail G. Brik, Sergei Piskunov

Summary: Real-time time-dependent density-functional theory calculations were used to analyze the optical property and charge transitions of a single noble metal atom deposited on rutile TiO2(110) surface. Absorption spectra were calculated for all model structures, and transition contribution maps were computed to provide deeper insight into photo-absorption processes. The results revealed the accumulation of photogenerated electrons around the deposited gold atoms in TiO2, which is important for the design strategy of future photocatalytic materials.

CRYSTALS (2022)

Article Multidisciplinary Sciences

Electronic Structure, Optical, and Elastic Properties of AgGaS2 Crystal: Theoretical Study

M. Ya Rudysh, N. Y. Ftomyn, P. A. Shchepanskyi, G. L. Myronchuk, A. Popov, N. Lemee, V. Y. Stadnyk, M. G. Brik, M. Piasecki

Summary: A comprehensive theoretical study has been conducted on the structure, electronic, optical, and elastic properties of the ternary semiconductor silver thiogallate crystal AgGaS2. The study establishes a structure-properties relationship and efficiently resolves discrepancies between experimental and calculated data. Additionally, the study calculates the linear electro-optic properties, electrogyration coefficients, and second-order nonlinear optical coefficients of AgGaS2 crystals.

ADVANCED THEORY AND SIMULATIONS (2022)

Article Chemistry, Physical

Thermally-induced structural phase transition in rare earth orthophosphate nanocrystals for highly sensitive thermal history paints

K. Maciejewska, P. Szklarz, A. Bednarkiewicz, M. D. Dramicanin, L. Marciniak

Summary: This study demonstrated that temperature-driven irreversible structural phase transformations in Eu3+ activated LaPO4, La0.5Y0.5PO4, and YPO4 nanocrystals can be utilized for thermal history measurements in the temperature range of 200°C-1000°C. The changes in Eu3+ local surroundings due to temperature increase modified the intensity and emission spectra, and the intensity ratio of Eu3+ 5D0 -> 7F2 to 5D0 -> 7F1 emissions served as a highly-sensitive indicator of the highest temperature experienced by the nanocrystals. The proposed ratiometric readout strategy enhanced the accuracy of thermal history analysis.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Materials Science, Multidisciplinary

Analysis of site symmetries of Er3+ doped CaF2 and BaF2 crystals by high resolution photoluminescence spectroscopy

A. V. Racu, Z. Ristic, A. Ciric, V. Dordevic, G. Buse, M. Poienar, M. J. Gutmann, O. Ivashko, M. Stef, D. Vizman, M. D. Dramicanin, M. Piasecki, M. G. Brik

Summary: This study investigates the correlation between optical properties, local symmetry, and crystal structure in CaF2 and BaF2 fluoride crystals doped with ErF3. The differences in optical properties between CaF2 and BaF2 crystals at room temperature are observed and attributed to the differences in cationic radius and dopant-host ionic radius. The determined symmetries and bond lengths of Er3+- F- ions in both crystals are reported. This study provides valuable insight into the development of lanthanide-doped optical materials.

OPTICAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Mn5+ Lifetime-Based Thermal Imaging in the Optical Transparency Windows Through Skin-Mimicking Tissue Phantom

Wojciech M. Piotrowski, Riccardo Marin, Maja Szymczak, Emma Martin Rodriguez, Dirk H. Ortgies, Paloma Rodriguez-Sevilla, Miroslav D. Dramicanin, Daniel Jaque, Lukasz Marciniak

Summary: Lifetime-based luminescence thermometry enables accurate deep-tissue monitoring of temperature changes, but short lifetimes and poor brightness limit its performance. A solution to these limitations is the design and optimization of luminescent nanothermometers co-doped with transition metal and lanthanide ions, which exhibit strong near-infrared emission and long temperature-dependent photoluminescence lifetime. These nanothermometers, combined with a custom-made instrument, allow for obtaining 2D thermal maps for deep-tissue thermal mapping. This study provides foundations for the deployment of lifetime-based thermometry for accurate deep-tissue temperature monitoring.

ADVANCED OPTICAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles

Bojana Milicevic, Jovana Perisa, Zoran Ristic, Katarina Milenkovic, Zeljka Antic, Krisjanis Smits, Meldra Kemere, Kaspars Vitols, Anatolijs Sarakovskis, Miroslav D. D. Dramicanin

Summary: We present a hydrothermal synthesis method for ultrasmall Yb3+/Tm3+ co-doped Sr2LaF7 (SLF) upconversion phosphors. By varying the concentrations of Yb3+ (x = 10, 15, 20, and 25 mol%) and Tm3+ (y = 0.75, 1, 2, and 3 mol%), the emissions in the near IR spectral range were analyzed. Structural analysis revealed that Yb3+ and Tm3+ occupy the La3+ sites in the SLF host. The addition of Yb3+/Tm3+ ions significantly affected the lattice constant, particle size, and PL emission properties of the synthesized SLF nanophosphor. The optimal dopant concentrations for upconversion luminescence were found to be 20 mol% Yb3+ and 1 mol% Tm3+ with EDTA as the chelating agent. Strong upconversion emission of Tm3+ ions around 800 nm was achieved under 980 nm light excitation. The study suggests potential applications of ultrasmall Yb3+/Tm3+ co-doped SLF phosphors in fluorescent labels for bioimaging and security.

NANOMATERIALS (2023)

Article Biophysics

Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid

Jelena Papan Djanis, Jovana Perisa, Patricija Hribar Bostjancic, Katarina Mihajlovski, Vesna Lazic, Miroslav Dramicanin, Darja Lisjak

Summary: Colloidal stabilization is crucial for the preparation of magnetic nanoparticles for biomedical applications. In this study, tannic acid was used as a coating for barium hexaferrite nanoplatelets (BSHF NPLs) to achieve stability in aqueous media. The coated BSHF NPLs were characterized and their magnetic properties were measured. The stable colloids were tested in biological media, and the antimicrobial properties were examined. To enhance antimicrobial activity, tannic acid was used as a platform for the in-situ production of silver on BSHF NPLs. The hybrid material exhibited magnetic properties and excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus.

COLLOIDS AND SURFACES B-BIOINTERFACES (2023)

Article Energy & Fuels

Ab Initio Modeling of CuGa1-xInxS2, CuGaS2(1-x)Se2x and Ag1-xCuxGaS2 Chalcopyrite Solid Solutions for Photovoltaic Applications

Jurij Grechenkov, Aleksejs Gopejenko, Dmitry Bocharov, Inta Isakovica, Anatoli I. Popov, Mikhail G. Brik, Sergei Piskunov

Summary: In this study, we investigated the less studied solid solutions of CuGaS2, AgGaS2, and CuGaSe2 chalcopyrites using ab initio methods. Our theoretical simulations indicate that excess of In and Se in the solid solutions leads to band gap narrowing and broadening of the absorption spectra. These findings suggest potential photovoltaic applications for these compounds and demonstrate the usefulness of our developed methodology for further study of other promising chalcopyritic compounds.

ENERGIES (2023)

Article Genetics & Heredity

Comparative analysis of Ag NPs functionalized with olive leaf extract and oleuropein and toxicity in human trophoblast cells and peripheral blood lymphocytes

Andrea Pirkovic, Vesna Lazic, Biljana Spremo-Potparevic, Lada Zivkovic, Dijana Topalovic, Sanja Kuzman, Jelena Antic-Stankovic, Dragana Bozic, Milica Jovanovic Krivokuca, Jovan M. Nedeljkovic

Summary: Dry olive leaf extract (DOLE) and its active component oleuropein (OLE) were used to synthesize colloidal silver nanoparticles (Ag NPs) with a size range of 20-25 nm. The cytotoxicity, genotoxicity, and antimicrobial activity of these Ag NPs were evaluated. The results showed that Ag/OLE exhibited the highest cytotoxicity, while Ag/DOLE and Ag/OLE did not induce genotoxic effects. Ag/OLE also demonstrated superior antimicrobial activity against different microorganisms compared to Ag/DOLE. However, the high concentrations of Ag/OLE could induce cytotoxicity in healthy human cells, suggesting potential risks.

MUTAGENESIS (2023)

Article Chemistry, Analytical

Comparison of Performance between Single- and Multiparameter Luminescence Thermometry Methods Based on the Mn5+ Near-Infrared Emission

Tahani A. Alrebdi, Abdullah N. Alodhayb, Zoran Ristic, Miroslav D. Dramicanin

Summary: In this study, the performance of single- and multiparametric luminescence thermometry based on the temperature-dependent spectral features of Ca6BaP4O17:Mn5+ near-infrared emission was investigated. Experimental results showed that as the temperature increased, the intensities of the T-3(2) and Stokes bands increased, while the peak of the E-1 emission band redshifted. The multiparametric luminescence thermometry showed comparable performance to the best single-parameter thermometry.

SENSORS (2023)

Article Optics

Terahertz photoluminescence in doped nanostructures with spatial separation of donors and acceptors

R. B. Adamov, G. A. Melentev, I. V. Sedova, S. V. Sorokin, G. V. Klimko, I. S. Makhov, D. A. Firsov, V. A. Shalygin

Summary: This study investigates the THz luminescence in doped nanostructures with GaAs/AlGaAs quantum wells under interband optical pumping. The results show that the spatial separation of donors and acceptors can greatly enhance the integrated intensity of THz emission.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Luminescent ratiometric temperature sensing based on Pr3+ and Bi3+ co-doped CaNb2O6 phosphors

Yanru Li, Lei Zhong, Sha Jiang, Yutong Wang, Binyao Huang, Guotao Xiang, Li Li, Yongjie Wang, Chuan Jing, Xianju Zhou

Summary: In this study, a ratiometric luminescent thermometry based on dual-emission centers was developed using co-doped CaNb2O6 phosphors with Bi3+ and Pr3+. The obtained samples exhibited good thermosensitive and thermochromic characteristics, with a maximum absolute sensitivity of 0.09 K-1 @ 528 K and a maximum relative sensitivity of 2.17 % K-1 @ 453 K.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Benefit of Tb3+ ions to the spectral properties of Dy3+/Tb3+:CaYAlO4 crystal for use in yellow laser

Yujing Gong, Yeqing Wang, Zhiyuan Wang, Yijian Sun, Yi Yu

Summary: Single crystals of Dy3+ single-doped and Dy3+/Tb3+ co-doped CaYAlO4 were grown and analyzed. The incorporation of Tb3+ resulted in increased absorption and emission cross sections. The fluorescence lifetimes and branching ratios of the yellow emission were affected by the presence of Tb3+. The deactivation effect of Tb3+ ions and energy transfer mechanism were also discussed.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

MgF2-doped MgO-YAG:Ce composite ceramics prepared by pressureless vacuum sintering for laser-driven lighting

Lu Chen, Zhuangzhuang Ma, Jian Chen, Wang Guo

Summary: This study focuses on enhancing the thermal robustness of phosphor converter materials by preparing composite ceramics of YAG:Ce combined with high-thermal-conductivity MgO. The composite ceramics showed high density and thermal conductivity at the optimum temperature of 1400℃. Stable laser-driven white light was obtained under blue laser excitation.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Structural, luminescence, and temperature sensing properties of the Er3+-doped germanate-tellurite glass by excitation at different wavelengths

Yuwei Wu, Chunhui Niu, Lei Wang, Mingqing Yang, Shiyu Zhang

Summary: Er3+-doped germanate-tellurite glasses were prepared and their structure, luminescent, and temperature-sensing properties were studied. The glass exhibited large values of O2 and O6 and its luminescence intensity varied with temperature.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Evaluation of photoluminescence and scintillation properties of Eu-doped YVO4 single crystals synthesized by optical floating zone method

Kensei Ichiba, Takumi Kato, Kenichi Watanabe, Yuma Takebuchi, Daisuke Nakauchi, Noriaki Kawaguchi, Takayuki Yanagida

Summary: In this study, Eu-doped YVO4 single crystals with different concentrations were fabricated to evaluate their photoluminescence and scintillation properties. The results showed that the samples doped with Eu exhibited emission peaks due to 4f-4f transitions in PL and scintillation spectra. Based on the pulse height spectra, the light yield of the Eu-doped samples increased with increasing Eu concentration, while the afterglow level decreased.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Refractive index dependence of the radiative rate of a magnetic dipole transition for a nanoparticle system

Daiwen Xiao, Hei-Yui Kai, Anjun Huang, Menglin Song, Ka-Leung Wong, Peter A. Tanner

Summary: The emission spectra of Cs2NaEuCl6 nanoparticles synthesized by the hot injection method are explained. The dispersion of the nanoparticles in alkane solvents in the experiment allows the determination of the magnetic dipole radiative rate for the D-5(0) -F-7(1) channel in vacuum, which is in agreement with the calculated value.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Nd3+ doped oxide thermal probes based on luminescence intensity ratio within BW-II and excitation in BW-I

Italia V. Barbosa, Geraldine Dantelle, Alain Ibanez, Lauro J. Q. Maia

Summary: The thermal response and luminescence properties of different oxide matrices were evaluated to design more accurate thermal probes. It was found that thermal probes emitting in BW-II provide better thermal sensing with higher signal-to-noise ratio. Additionally, doping Nd3+ in Y2O3 matrix maximizes luminescence intensity, making it a promising matrix for thermal sensing.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Tunable luminescence properties of the Ca3-xLuxSc2-xMgxSi3O12:Ce3+ phosphor based LD lighting

Xin Li, Yu Zhang, Hongrui Ren, Lunlong Xie, Yinsheng Di, Mengqing Han, Zhaohui Bai, Quansheng Liu, Liangliang Zhang, Jiahua Zhang

Summary: This study successfully prepared phosphor samples based on Ca3-xLuxSc2-xMgxSi3O12:Ce3+ and investigated their luminescence properties. With the increase in Lu-Mg concentration, the peak of the sample redshifted, but the thermal stability gradually decreased. The LD devices made from CLSMS:Ce3+ fluorescent materials showed a decrease in cyan-green light and an increase in red light as the Lu-Mg concentration increased.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

On the optical properties of gallium based garnet phosphors according to Ca2Ln1-xCexZr2Ga3O12 (with Ln = Y, La, Gd, Lu)

Tim Pier, Julia Hopster, Thomas Juestel

Summary: This study investigates and reports on several samples of cerium-activated gallium-based garnet phosphors. The optimal activator concentration was found to be 1 atom-%. The size of non-emitting lanthanide ions and the molar concentration of cerium strongly influenced the crystal field splitting, which in turn shaped the excitation and emission wavelengths.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Exploring the excited state multi-proton transfer path and the associated photophysical properties of P-TNS molecule by DFT and TDDFT theory

Guijie Zhao, Wei Shi, Xin Xin, Fengcai Ma, Yongqing Li

Summary: This study reveals for the first time the proton transfer pathways and changes in the photophysical properties of P-TNS with three intramolecular hydrogen bonds. The reaction mechanism and driving force for the proton transfer process are explained through analysis of potential energy surface, frontier molecular orbitals, and hydrogen bond parameters, among others.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Achieving thermochromic upconversion of Tm3+for high-sensitive nanoprobe and information encryption

Li He, Jinshu Huang, Zhengce An, Haozhang Huang, Yu Zhao, Kexin Zhong, Bo Zhou

Summary: In this study, we designed a NaYF4:Yb3+/Tm3+@NaYF4 core-shell nanostructure to achieve thermochromic upconversion and high thermal sensitivity. We found that the blue upconversion emission of Tm3+ decreased while the deep-red emission increased with elevating temperature. The sample also showed a gradual emission color change from blue to purplish-red, and the optimal relative sensitivity reached 2.79% K-1.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Improving the UV-Vis light-harvesting of Er3+using Mn4+as a sensitizer in Li2TiO3 host

Rupesh A. Talewar

Summary: A series of Li2TiO3 phosphors doped with Mn4+ and codoped with Mn4+ and Er3+ were synthesized, which demonstrated the ability of Mn4+ ions to absorb UV-Vis photons and subsequently transfer energy to Er3+ ions, resulting in the emission of near-infrared light. These materials have the potential to enhance the absorption efficiency of Er3+-based luminescent materials.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Preparation of multicolor carbon quantum dots by hydrothermal method and their functionalization applications

Xingyuan Ma, Jianfeng Li

Summary: Carbon quantum dots (CQDs) with tunable photoluminescence properties have been synthesized using suitable carbon and dopant sources in an aqueous system. The synthesized CQDs exhibited blue, green, yellow, and red emissions, and solid-state luminescence was achieved through the preparation of solid-state fluorescent films and phosphors. This study provides important technical support for the future development of CQDs synthesis.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Desirable chirality and circularly polarized luminescence of valine methyl ester-containing indolo[3,2-b]carbazole achieved through a self-assembly strategy

De Bin Fu, Yang Bing Xu, Yu Teng Zhang, Shan Ting Liu, Xiao Fei Yang, Sheng Hua Liu

Summary: A pair of new chiral molecules, (S)-4 and (R)-4, have been designed and synthesized by introducing valine-containing groups at symmetrical positions on the periphery of an indolo[3,2-b]carbazole unit. These molecules exhibit aggregation-induced circular dichroism (AICD) properties in DMF/water mixtures, and in a mixture with 99% water fraction, they show strong, mirror-image, blue circularly polarized luminescence (CPL) signals.

JOURNAL OF LUMINESCENCE (2024)