4.6 Article

Highly sensitive temperature reading from intensity ratio of Eu3+ And Mn4+emissions in Y3Al5O12 nanocrystals

期刊

MATERIALS RESEARCH BULLETIN
卷 149, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.materresbull.2021.111708

关键词

Luminescent thermometry; Double activated YAG; Eu3+; Mn4+

资金

  1. NATO Science for Peace and Security Programme [G5751]
  2. Ministry of Education, Science, and Technological Development of the Republic of Serbia

向作者/读者索取更多资源

The potential of Eu3+, Mn4+ co-doped YAG for dual-activated luminescence intensity ratio thermometry is investigated. The samples were prepared and characterized, and the optimal concentrations of Mn4+ and Eu3+ were determined. Sensitivities were calculated using luminescence intensity ratio as the indicator of temperature.
Potential of Eu3+, Mn4+ co-doped YAG for dual-activated luminescence intensity ratio thermometry is investigated. The samples were prepared by modified Pechini method and cubic structure confirmed by X-ray diffraction with average crystallite size of similar to 20 nm. Scanning electron microscopy revealed different sized chunks composed of ellipsoidal-shaped particles bellow 50 nm. Temperature-dependent photoluminescent emission spectra (lambda(ex) = 465 nm, 98-473 K temperature range) of co-doped samples consist of emission bands in the red spectral region originating from both Eu3+ and Mn4+ transitions. Concentration of Mn4+ and Eu3+ is optimized to be 0.5mol% and 3mol%. Observed suppression of Eu3+ emission indicate an efficient (similar to 97%) energy transfer from Eu3+ to Mn4+. Using luminescence intensity ratio as the ratio between the integrated intensities of the Eu3+ D-5(0)-> F-7(1) transition and the Mn4+ E-2 ->(4)A(2) manyfold, maximal absolute and relative sensitivities of S-Amax = 19.2mK(-1) at 351 K and S-Rmax = 5.06%K-1 at 321 K were calculated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Applied

Luminescence intensity ratio squared-A new luminescence thermometry method for enhanced sensitivity

Aleksandar Ciric, Tukasz Marciniak, Miroslav D. Dramicanin

Summary: In this study, a novel temperature readout method utilizing thermalized energy levels in trivalent lanthanide ion-activated phosphors is proposed to overcome the sensitivity limitation of ratiometric luminescence thermometers. The method, called luminescence intensity ratio squared (LIR2), combines the advantages of dual-excitation single emission band ratiometric (SBR) and conventional luminescence intensity ratio (LIR) techniques. The LIR2 method demonstrates significantly enhanced thermometric performance compared to SBR and LIR techniques over a wide temperature range (300-850 K).

JOURNAL OF APPLIED PHYSICS (2022)

Article Engineering, Multidisciplinary

Thermal history forensics using the emission intensity ratio of YVO4: Eu3+ phosphor

Tamara Gavrilovic, Jovana Perisa, Zoran Ristic, Karolina Elzbieciak-Piecka, Lukasz Marciniak, Chong-Geng Ma, Zeljka Antic, Miroslav D. Dramicanin

Summary: We demonstrate a thermal history forensic measurement method based on the emission intensity ratio of Eu3+-doped yttrium vanadate. By observing the increase in phosphor's crystallite size with annealing temperature, we found a significant and permanent increase in emission intensity and symmetry ratio, which serves as an indicator of the maximal temperature to which the phosphor was exposed. Additionally, the irreversible change in the symmetry ratio after exposure to high temperatures was found to be insensitive to the exposure time. Furthermore, thermal history readings can be performed at any temperature.

MEASUREMENT (2022)

Article Chemistry, Physical

Thermally-induced structural phase transition in rare earth orthophosphate nanocrystals for highly sensitive thermal history paints

K. Maciejewska, P. Szklarz, A. Bednarkiewicz, M. D. Dramicanin, L. Marciniak

Summary: This study demonstrated that temperature-driven irreversible structural phase transformations in Eu3+ activated LaPO4, La0.5Y0.5PO4, and YPO4 nanocrystals can be utilized for thermal history measurements in the temperature range of 200°C-1000°C. The changes in Eu3+ local surroundings due to temperature increase modified the intensity and emission spectra, and the intensity ratio of Eu3+ 5D0 -> 7F2 to 5D0 -> 7F1 emissions served as a highly-sensitive indicator of the highest temperature experienced by the nanocrystals. The proposed ratiometric readout strategy enhanced the accuracy of thermal history analysis.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Materials Science, Multidisciplinary

Analysis of site symmetries of Er3+ doped CaF2 and BaF2 crystals by high resolution photoluminescence spectroscopy

A. V. Racu, Z. Ristic, A. Ciric, V. Dordevic, G. Buse, M. Poienar, M. J. Gutmann, O. Ivashko, M. Stef, D. Vizman, M. D. Dramicanin, M. Piasecki, M. G. Brik

Summary: This study investigates the correlation between optical properties, local symmetry, and crystal structure in CaF2 and BaF2 fluoride crystals doped with ErF3. The differences in optical properties between CaF2 and BaF2 crystals at room temperature are observed and attributed to the differences in cationic radius and dopant-host ionic radius. The determined symmetries and bond lengths of Er3+- F- ions in both crystals are reported. This study provides valuable insight into the development of lanthanide-doped optical materials.

OPTICAL MATERIALS (2023)

Article Optics

Judd-Ofelt description of radiative properties of YNbO4 activated with different Eu3+concentrations

Ljubica Dacanin Far, Aleksandar Ciric, Milica Sekulic, Jovana Peris, Zoran Ristic, Zeijka Antic, Miroslav D. Dramicanin

Summary: YNbO4:xEu3+ powders with varying concentrations (0.1, 0.25, 0.5, 0.75, 1, 3, 5, 7.5, 10, 15, 20 mol %) were synthesized through a solid-state reaction and homogenization in a vibrational mill. The samples exhibited a monoclinic Fergusonite-beta-(Y) structure (C2/c space group) with crystallite sizes ranging from 45-65 nm. The samples showed strong orange/red luminescence with 5D0 excited state lifetimes of approximately 0.6 ms. Photoluminescence emission spectra indicated no concentration quenching within the examined concentration range. Judd-Ofelt intensity parameters showed a slight increase with increasing concentration, reaching a maximum of Omega(2) = 8.13 × 10(-20) cm(2), Omega(4) = 2.67 × 10(-20) cm(2), and an invariant value of Omega(6) at 0.35 × 10(-20) cm(2). The emission lifetimes of the 5D0 state remained nearly constant at around 0.6 ms with a slight decrease at the highest concentrations. The intrinsic quantum yield for all samples was approximately 0.5.
Article Materials Science, Multidisciplinary

Mn5+ Lifetime-Based Thermal Imaging in the Optical Transparency Windows Through Skin-Mimicking Tissue Phantom

Wojciech M. Piotrowski, Riccardo Marin, Maja Szymczak, Emma Martin Rodriguez, Dirk H. Ortgies, Paloma Rodriguez-Sevilla, Miroslav D. Dramicanin, Daniel Jaque, Lukasz Marciniak

Summary: Lifetime-based luminescence thermometry enables accurate deep-tissue monitoring of temperature changes, but short lifetimes and poor brightness limit its performance. A solution to these limitations is the design and optimization of luminescent nanothermometers co-doped with transition metal and lanthanide ions, which exhibit strong near-infrared emission and long temperature-dependent photoluminescence lifetime. These nanothermometers, combined with a custom-made instrument, allow for obtaining 2D thermal maps for deep-tissue thermal mapping. This study provides foundations for the deployment of lifetime-based thermometry for accurate deep-tissue temperature monitoring.

ADVANCED OPTICAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles

Bojana Milicevic, Jovana Perisa, Zoran Ristic, Katarina Milenkovic, Zeljka Antic, Krisjanis Smits, Meldra Kemere, Kaspars Vitols, Anatolijs Sarakovskis, Miroslav D. D. Dramicanin

Summary: We present a hydrothermal synthesis method for ultrasmall Yb3+/Tm3+ co-doped Sr2LaF7 (SLF) upconversion phosphors. By varying the concentrations of Yb3+ (x = 10, 15, 20, and 25 mol%) and Tm3+ (y = 0.75, 1, 2, and 3 mol%), the emissions in the near IR spectral range were analyzed. Structural analysis revealed that Yb3+ and Tm3+ occupy the La3+ sites in the SLF host. The addition of Yb3+/Tm3+ ions significantly affected the lattice constant, particle size, and PL emission properties of the synthesized SLF nanophosphor. The optimal dopant concentrations for upconversion luminescence were found to be 20 mol% Yb3+ and 1 mol% Tm3+ with EDTA as the chelating agent. Strong upconversion emission of Tm3+ ions around 800 nm was achieved under 980 nm light excitation. The study suggests potential applications of ultrasmall Yb3+/Tm3+ co-doped SLF phosphors in fluorescent labels for bioimaging and security.

NANOMATERIALS (2023)

Article Biophysics

Barium hexaferrite nanoplatelets with polyphenol coatings for versatile applications as a stable, magnetic, and antimicrobial colloid

Jelena Papan Djanis, Jovana Perisa, Patricija Hribar Bostjancic, Katarina Mihajlovski, Vesna Lazic, Miroslav Dramicanin, Darja Lisjak

Summary: Colloidal stabilization is crucial for the preparation of magnetic nanoparticles for biomedical applications. In this study, tannic acid was used as a coating for barium hexaferrite nanoplatelets (BSHF NPLs) to achieve stability in aqueous media. The coated BSHF NPLs were characterized and their magnetic properties were measured. The stable colloids were tested in biological media, and the antimicrobial properties were examined. To enhance antimicrobial activity, tannic acid was used as a platform for the in-situ production of silver on BSHF NPLs. The hybrid material exhibited magnetic properties and excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus.

COLLOIDS AND SURFACES B-BIOINTERFACES (2023)

Article Physics, Applied

Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer

Aleksandar Ciric, Thomas van Swieten, Jovana Perisa, Andries Meijerink, Miroslav D. D. Dramicanin

Summary: Luminescence thermometry is a versatile remote temperature sensing technique. This study introduces a novel measurement technique, LIR2, which combines the temperature sensitivity of ground- and excited-state populations. By using Y3Al5O12:Er3+,Yb3+ nanoparticles, the LIR2 method shows significant increase in sensitivity and measurement precision comparing to the conventional LIR method.

JOURNAL OF APPLIED PHYSICS (2023)

Article Genetics & Heredity

Comparative analysis of Ag NPs functionalized with olive leaf extract and oleuropein and toxicity in human trophoblast cells and peripheral blood lymphocytes

Andrea Pirkovic, Vesna Lazic, Biljana Spremo-Potparevic, Lada Zivkovic, Dijana Topalovic, Sanja Kuzman, Jelena Antic-Stankovic, Dragana Bozic, Milica Jovanovic Krivokuca, Jovan M. Nedeljkovic

Summary: Dry olive leaf extract (DOLE) and its active component oleuropein (OLE) were used to synthesize colloidal silver nanoparticles (Ag NPs) with a size range of 20-25 nm. The cytotoxicity, genotoxicity, and antimicrobial activity of these Ag NPs were evaluated. The results showed that Ag/OLE exhibited the highest cytotoxicity, while Ag/DOLE and Ag/OLE did not induce genotoxic effects. Ag/OLE also demonstrated superior antimicrobial activity against different microorganisms compared to Ag/DOLE. However, the high concentrations of Ag/OLE could induce cytotoxicity in healthy human cells, suggesting potential risks.

MUTAGENESIS (2023)

Article Chemistry, Analytical

Comparison of Performance between Single- and Multiparameter Luminescence Thermometry Methods Based on the Mn5+ Near-Infrared Emission

Tahani A. Alrebdi, Abdullah N. Alodhayb, Zoran Ristic, Miroslav D. Dramicanin

Summary: In this study, the performance of single- and multiparametric luminescence thermometry based on the temperature-dependent spectral features of Ca6BaP4O17:Mn5+ near-infrared emission was investigated. Experimental results showed that as the temperature increased, the intensities of the T-3(2) and Stokes bands increased, while the peak of the E-1 emission band redshifted. The multiparametric luminescence thermometry showed comparable performance to the best single-parameter thermometry.

SENSORS (2023)

Article Crystallography

Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings

Zeljka Antic, Aleksandar Ciric, Milica Sekulic, Jovana Perisa, Bojana Milicevic, Abdullah N. Alodhayb, Tahani A. Alrebdi, Miroslav D. Dramicanin

Summary: By using multiparameter and multilevel cascade temperature readings, we have overcome the sensitivity limitation of trivalent lanthanide thermometers and improved their performance at high temperatures.

CRYSTALS (2023)

Article Materials Science, Multidisciplinary

Non-synthetic luminescent graphene quantum dots in coconut water for aniline sensing applications

A. Aly, M. Ghali, A. Osman, M. K. El Nimr

Summary: This study reports the discovery of naturally occurring luminescent graphene quantum dots (GQDs) in coconut water for the first time. The GQDs were identified through various measurements and were found to have dual sizes and emit different wavelengths of light. The GQDs were also utilized as an efficient optical sensor for aniline liquid detection.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

High-performance e-VOPO4 cathode materials for sodium ion battery applications

Zehua Chen, Wencheng Ma, Qinglu Fan, Yanhua Liu, Min Sun, Shuo Wang

Summary: The nanoscale e-VOPO4 materials were successfully prepared by hydrothermal synthesis and calcination, showing high purity and suitable particle size. It exhibited satisfactory electrochemical performance as cathode material for sodium ion batteries, making it a potential candidate for high energy storage systems.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Multifunctional terahertz device with active switching between bimodal perfect absorption and plasmon-induced transparency

Tao Liu, Yahui Liu, Le Ling, Zhongxi Sheng, Zao Yi, Zigang Zhou, Yongjia Yang, Bin Tang, Qingdong Zeng, Tangyou Sun

Summary: In this paper, a terahertz (THz) micronano device that can switch between bimodal absorption and plasmon-induced transparency (PIT) is proposed. The device consists of layers of graphene, silica, and vanadium dioxide, and has a simple structure, easy tuning, and wide-angle absorption. The device achieves perfect absorption at specific frequencies and is highly sensitive to environmental refractive index. It also has the functions of a three-frequency asynchronous optical switch and slow light effect.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Direct laser printing of 3D optical imaging based on full-spectrum solar-absorption-enhanced perovskite-type oxides

Xiaobo Luo, Songhan Hu, Qiudong Duan, Dacheng Zhou, Jialin Chen, Yugeng Wen, Jianbei Qiu

Summary: The exploration of solar light absorption by a material is important in photonics and optoelectronics. This study reveals the potential of Ba3-xGa2O6:xBi3+ as a promising candidate for various photonic and optoelectronic applications, and demonstrates the use of the material in double-sided laser printing for three-dimensional optical imaging.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Interface and magnetic-dielectric synergy strategy to develop Fe3O4-Fe2CO3/multi-walled carbon nanotubes/reduced graphene oxide mixed-dimensional multicomponent nanocomposites for microwave absorption

Hemin Wang, Yanling Hao, Lele Xiang, Xiaosi Qi, Lei Wang, Junfei Ding, Yunpeng Qu, Jing Xu, Wei Zhong

Summary: This study designed Fe3O4-FeCO3/MWCNTs/RGO MCNCs composites and fabricated large-scale samples using hydrothermal and freeze-drying methods. The microstructural investigation showed that these materials had a mixed-dimensional structure, which improved impedance matching features, polarization, and conduction loss abilities, leading to significantly enhanced electromagnetic absorption properties.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

All-dielectric terahertz metamaterial with polarization switching characteristic

Zhenshan Yu, Hao Chen, Xuequan Chen, Yu-Sheng Lin

Summary: This study presents a silicon dielectric metamaterial (SDM) composed of two outer symmetric semi-circular rings and two inner symmetric split-ring resonators (SRRs). The electromagnetic responses of the SDM device in different modes were studied through numerical simulations and experiments. Increasing the structure height of the SDM device resulted in red-shifted resonances and stronger intensities. This study provides a new design strategy for the development of frequency filtering, polarization switching, and resonance modulation characteristics in THz-wave applications.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

α-PW11Fe(Co/Ni)/BC derived carbon fiber based nanocomposites for high efficiency electromagnetic wave absorption via synergistic effects of polarization and conductance

Yiming Qi, Na Zhang, Meng Zong, Yangxianzi Liu, Weixing Chen

Summary: This study prepares dielectric/carbon fiber based nanocomposites wave-absorbing materials using liquid diffusion and high temperature carbonization strategies. By tuning the element type, drying mode, and filling amount, the electromagnetic parameters and absorbing properties can be adjusted. The best synthesized sample shows excellent absorbing performance, making it suitable for a wide range of electromagnetic wave absorption applications.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Study of the centers responsible for the TL emission by EPR and PL analysis of Eu-doped CaSiO3 phosphors synthesized by the devitrification method

Carlos D. Gonzales-Lorenzo, T. K. Gundu Rao, Alberto A. Ccollque-Quispe, Jorge Ayala-Arenas, Monise B. Gomes, Betzabel N. Silva-Carrera, Roseli F. Gennari, Valeria S. Pachas, F. Monzon-Macedo, H. Loro, Jose F. D. Chubaci, Nilo F. Cano, Rene R. Rocca, Shigueo Watanabe

Summary: In this study, CaSiO3 doped with different ppm of Eu was synthesized using the devitrification method. Various physical properties were analyzed, revealing that the intensity and temperature of the high-temperature TL peak increased with higher dopant amounts. Fluorescence measurements indicated the presence of Eu2+ and Eu3+ ions in the samples. EPR spectra confirmed the existence of two defect centers.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Synergetic assembly of a molybdenum disulfide/carbon quantum dot heterojunction with enhanced light absorption and electron transfer di-functional properties for photocatalysis

Yanning Qu, Xinyang Li, Mei Cui, Renliang Huang, Wanquan Ma, Yunting Wang, Rongxin Su, Wei Qi

Summary: In this study, a new molybdenum disulfide/N,S-doped carbon quantum dots (MoS2/N,S-CQDs) heterojunction with enhanced light absorption and electrons transfer di-functional properties was constructed via a facile one-pot hydrothermal method. The heterojunction showed remarkable efficiencies in degrading methylene blue (MB) and malachite green (MG) in an actual water system under simulated sunlight irradiation. The facile synthetic technique and effective multifunctional properties of the composite have the potential for further research and industrial applications.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Acid-alkali assisted synthesis of white tremella-like g-C3N4 homojunction for photocatalytic degradation under visible light

Jiayi Wang, Penggang Ren, Xueyan Zhao, Zhengyan Chen, Yanling Jin, Zengping Zhang

Summary: In this study, a novel homojunction photocatalyst was developed by combining defective g-C3N4 and flaked g-C3N4, which showed excellent degradation performance and cycling stability, and exhibited practicality in several simulation experiments.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Zn-MOF-derived hierarchical carbon nanorods superstructures with tunable microwave absorption properties

Jing Yan, Xiaoxiao Zhao, Weixing Chen, Panbo Liu

Summary: This research presents a self-templated strategy to prepare a spherical superstructure of carbon nanorods through material modification and pyrolysis. The resulting material exhibits a large controllable radius of curvature and shows excellent microwave absorbing properties due to its high specific surface area and mesoporous structure.

MATERIALS RESEARCH BULLETIN (2024)

Review Materials Science, Multidisciplinary

Electrolytes for liquid metal batteries

Qinglin Zeng, Zepeng Lv, Shaolong Li, Bin Yang, Jilin He, Jianxun Song

Summary: Liquid metal batteries possess stable safety performance, high rate performance, and thermal stability. The electrolyte, an important component of the battery, plays a significant role in achieving these remarkable performance characteristics. This paper reviews the important research progress of liquid metal batteries electrolyte and discusses the influence of different electrolyte types on energy efficiency. It also highlights the limitations and challenges of existing electrolytes and proposes key development directions for liquid metal electrolytes.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Mn3O4@C micro-flakes modified Ti/TiH2/β-PbO2 anode for accelerating oxygen evolution reaction in zinc electrowinning

Song Wu, Junli Wang, Xuanbing Wang, Di Jiang, Jinlong Wei, Xiaoning Tong, Zhenwei Liu, Qingxiang Kong, Naixuan Zong, Ruidong Xu, Linjing Yang

Summary: In this study, a composite electrode composed of Ti/TiH2/beta-PbO2_Mn3O4@C was fabricated and investigated for zinc electrowinning. The composite electrode exhibited low overpotential, Tafel slope, icorr, and high voltage stability, outperforming most reported Ti-based PbO2 electrode materials. The excellent catalytic activity can be attributed to the low resistance and porous interlayer of TiH2 nanosheets, as well as the addition of Mn3O4@C micro-flakes to the active layer.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Simulation study of a nanomaterial interacting with ionizing radiation through OTOR and IMTS models for different particle sizes

E. Tsoutsoumanos, T. Karakasidis, N. Laskaris, P. G. Konstantinidis, G. S. Polymeris, G. Kitis

Summary: This study investigates the correlation between nanocrystal dimensions and thermoluminescence signal magnitude through simulations conducted in Python. Two mathematical models, OTOR and IMTS, were used to derive theoretical luminescence signals. The obtained results were compared with experimental data and a thorough comparative discussion was conducted.

MATERIALS RESEARCH BULLETIN (2024)

Article Materials Science, Multidisciplinary

Enhanced photoresponsivity in Bi2Se3 decorated GaN nanowall network-based photodetectors

Vishnu Aggarwal, Sudhanshu Gautam, Aditya Yadav, Rahul Kumar, Bipul Kumar Pradhan, Brajesh S. Yadav, Govind Gupta, Senthil Kumar Muthusamy, Sumeet Walia, Sunil Singh Kushvaha

Summary: Recently, there has been a great demand for highly responsive photodetectors that can detect a wide range of wavelengths. Researchers have successfully fabricated a broadband metal-semiconductor-metal photodetector by integrating sputtered Bi2Se3 with laser molecular beam epitaxy grown GaN film. This photodetector shows high responsivity in both the ultraviolet and near-infrared regions.

MATERIALS RESEARCH BULLETIN (2024)