4.6 Article Proceedings Paper

PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine

期刊

BMC BIOINFORMATICS
卷 19, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12859-018-2527-1

关键词

DNA-binding residue; Light gradient boosting; Random forest; Incremental feature selection

资金

  1. National Natural Science Foundation of China [61672541]

向作者/读者索取更多资源

BackgroundIdentifying specific residues for protein-DNA interactions are of considerable importance to better recognize the binding mechanism of protein-DNA complexes. Despite the fact that many computational DNA-binding residue prediction approaches have been developed, there is still significant room for improvement concerning overall performance and availability.ResultsHere, we present an efficient approach termed PDRLGB that uses a light gradient boosting machine (LightGBM) to predict binding residues in protein-DNA complexes. Initially, we extract a wide variety of 913 sequence and structure features with a sliding window of 11. Then, we apply the random forest algorithm to sort the features in descending order of importance and obtain the optimal subset of features using incremental feature selection. Based on the selected feature set, we use a light gradient boosting machine to build the prediction model for DNA-binding residues. Our PDRLGB method shows better overall predictive accuracy and relatively less training time than other widely used machine learning (ML) methods such as random forest (RF), Adaboost and support vector machine (SVM). We further compare PDRLGB with various existing approaches on the independent test datasets and show improvement in results over the existing state-of-the-art approaches.ConclusionsPDRLGB is an efficient approach to predict specific residues for protein-DNA interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据