4.7 Article

Effective microorganisms modify protein and polyamine pools in common bean (Phaseolus vulgaris L.) plants grown under saline conditions

期刊

SCIENTIA HORTICULTURAE
卷 190, 期 -, 页码 1-10

出版社

ELSEVIER
DOI: 10.1016/j.scienta.2015.04.005

关键词

Effective microorganisms; Phaseolus vulgaris; Polyamine pool; Protein content; Saline conditions

向作者/读者索取更多资源

No information is available regarding the influence of effective microorganisms (EM) on protein synthesis and polyamine balance in plants grown under saline conditions. Thus, as a first approach, this study sheds light on some different mechanisms that may protect EM-treated plants against salt excess. The response of common bean (Phaseolus vulgaris L.) cv. Nebraska to soil salinization [0.1 dS m(-1) (non-saline), 2.5 and 5.0 dS m(-1)] and/or EM application was investigated. Plants grown in saline soils exhibited a significant decline in productivity, membrane stability index, nitrate reductase activity, nitrate and protein content, K+ concentration, and K+/Na+ ratio. However, EM application ameliorated the deleterious effects of salinity and significantly improved the above parameters. Soil salinity induced oxidative damage through increased lipid peroxidation and hydrogen peroxide content. EM application significantly reduced the oxidative damage. Polyamines responded to salinity stress by increasing its content, particularly putrescine level. The EM treatment changed the polyamine balance under saline conditions, a high increase in spermidine and spermine levels was observed. Moreover, EM application significantly reduced the activities of diamine oxidase and polyamine oxidase in salt-stressed plants. Both the modulation of polyamine pool and the regulation of protein synthesis can be one of the most important mechanisms used by EM-treated plants to improve plant adaptation to saline soils. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Plant Sciences

Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine

Neveen B. Talaat, Bahaa T. Shawky, Ahmed S. Ibrahim

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2015)

Article Agronomy

Modulation of the ROS-scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi

Neveen B. Talaat, Bahaa T. Shawky

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE (2014)

Article Horticulture

Maize (Zea mays L.) grains extract mitigates the deleterious effects of salt stress on common bean (Phaseolus vulgaris L.) growth and physiology

Mostafa M. Rady, Neveen B. Talaat, Magdi T. Abdelhamid, Bahaa T. Shawky, El-Sayed M. Desokye

JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY (2019)

Article Plant Sciences

Polyamine and nitrogen metabolism regulation by melatonin and salicylic acid combined treatment as a repressor for salt toxicity in wheat (Triticum aestivum L.) plants

Neveen B. Talaat

Summary: The combined treatment of melatonin and salicylic acid showed the best response in alleviating salt stress in wheat plants, by regulating polyamine and nitrogen metabolism and reducing oxidative damage induced by salt stress.

PLANT GROWTH REGULATION (2021)

Article Plant Sciences

Co-application of Melatonin and Salicylic Acid Counteracts Salt Stress-Induced Damage in Wheat (Triticum aestivum L.) Photosynthetic Machinery

Neveen B. Talaat

Summary: The exogenous application of melatonin and salicylic acid significantly alleviated salt-induced decrease in wheat growth and productivity, with improvement in photosynthetic pigments content and reactions, as well as various physiological and biochemical parameters. The combined treatment of melatonin and salicylic acid showed the best response in enhancing plant tolerance to salt stress.

JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION (2021)

Article Plant Sciences

Synergistic Effects of Salicylic Acid and Melatonin on Modulating Ion Homeostasis in Salt-Stressed Wheat (Triticum aestivum L.) Plants by Enhancing Root H+-Pump Activity

Neveen B. Talaat, Bahaa T. Shawky

Summary: Salicylic acid and melatonin interaction can enhance salt tolerance in plants by increasing H+-pump activity, maintaining ionic homeostasis, and regulating ROS metabolism.

PLANTS-BASEL (2022)

Article Plant Sciences

Plant Growth Stimulators Improve Two Wheat Cultivars Salt-Tolerance: Insights into Their Physiological and Nutritional Responses

Neveen B. Talaat, Alaa M. A. Hanafy

Summary: This study investigated the combined treatment of Spermine and salicylic acid on wheat salt tolerance. The results showed that exogenously applied SA and SPM improved wheat growth and production by increasing photosynthetic pigment content, nutrient acquisition, ionic homeostasis, osmolyte accumulation, and protein content while reducing Na+ accumulation. The best response was observed with the combined treatment of SA and SPM.

PLANTS-BASEL (2022)

Article Biochemistry & Molecular Biology

Drought Stress Alleviator Melatonin Reconfigures Water-Stressed Barley (Hordeum vulgare L.) Plants' Photosynthetic Efficiency, Antioxidant Capacity, and Endogenous Phytohormone Profile

Neveen B. Talaat

Summary: This study demonstrates the potential of exogenous melatonin (MT) in mitigating the effects of water deficiency in barley. MT application improves photosynthesis, enzyme activity, membrane stability, and antioxidant activity, while also regulating plant hormone levels. The findings highlight the crucial role of MT in water stress tolerance.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (2023)

Article Horticulture

Characterization of the KNOTTED1-like HOMEOBOX gene family in kiwifruit and functional analysis of AcKNOX11 related to plant growth, flowering, and melatonin-mediated germination inhibition

Peng Jia, Rui Yan, Yuan Wang, Feng-huan Gao, Yang Liu, Qing-long Dong, Hao-an Luan, Xue-mei Zhang, Han Li, Su-ping Guo, Guo-hui Qi

Summary: The KNOX gene plays crucial roles in plant development, and this study identified 19 KNOX gene members in kiwifruit. One of the genes, AcKNOX11, is selectively expressed in flower buds and shoots, and its expression can be induced by ABA and melatonin. Functional analysis revealed that AcKNOX11 delays flowering, reduces plant height, alters leaf shape, and inhibits seed germination through ABA-melatonin interaction.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Nitrogen-deficient leaves and roots can keep high abilities to scavenge reactive oxygen species and methylglyoxal, and protect them against oxidative damage in Citrus sinensis seedlings

Dan Hua, Wen-Shu Chen, Rong-Yu Rao, Xu-Feng Chen, Huan-Huan Chen, Ning-Wei Lai, Lin-Tong Yang, Xin Ye, Li -Song Chen

Summary: This study revealed that nitrogen deficiency can lead to increased production of reactive oxygen species (ROS) and methylglyoxal (MG), but also enhances the ability of leaves and roots to detoxify these molecules. The effects of nitrogen deficiency on ROS and MG generation and their detoxification systems were found to be different in leaves and roots, with roots being more affected.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Suppression mechanism of soilborne diseases by biochar: Immobilization and deactivation of pathogenic enzymes and toxic metabolites

Shenghan Yang, Chonlong Chio, Wensheng Qin, Yanxi Pei, Guangpeng Pei, Yuen Zhu, Hua Li

Summary: This study evaluates the immobilization and deactivation of pathogen-produced enzymes and toxic metabolites by biochar in tomato Fusarium wilt and finds that biochar can effectively prevent disease occurrence.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Enhancing soil health and nutrient availability for Carrizo citrange (X Citroncirus sp.) through bokashi and biochar amendments: An exploration into indoor sustainable soil ecosystem management

Deborah Pagliaccia, Michelle Ortiz, Michael Rodriguez, Sophia Abbott, Agustina De Francesco, Madison Amador, Valeria Lavagi, Benjamin Maki, Francesca Hopkins, Jonathan Kaplan, Samantha Ying, Georgios Vidalakis

Summary: This study investigates the effectiveness of organic soil amendments (bokashi, biochar, and their combination) in promoting soil health, nutrient availability, and plant growth. The results show that these amendments can significantly alter soil parameters and have positive effects on soil and plant health.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Conserved and unique features of pepper FLOWERING LOCUS T-like genes revealed by comparative analysis among solanaceous crops

Yu-Jeong Kwon, Min Jeong Hong, Minkyu Park, Dawon Jeon, Gah-Hyun Lim, Sungyul Chang, Dong-Hwan Kim, Jin-Baek Kim, Jundae Lee, Yeong Deuk Jo

Summary: Flowing LOCUS T (FT)-like genes play crucial roles in flowering induction in plants. Pepper FT-like genes are mostly expressed in leaves and interact with FLOWERING LOCUS D, promoting or delaying flowering. The unique evolutionary process of pepper FT-like genes provides insights for improving productivity.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Effects of paper pouches of different light transmittance on the phenolic synthesis and related gene expression in peach fruit

Ziwen Su, Juan Yan, Binbin Zhang, Meng Sun, Zhixiang Cai, Zhijun Shen, Ruijuan Ma, Mingliang Yu

Summary: Bagging is a crucial cultivation measure that affects the quality of peach fruit by regulating exposure to light. This study investigated the effects of bagging on the content of phenolic compounds in peach fruit and identified the most sensitive compounds to bagging treatment. The study also explored the regulatory role of bagging on phenolic synthetic-related genes. The results showed that bagging affected the accumulation of different phenolics in different peach cultivars and light intensity played a significant role in the accumulation of anthocyanins and other phenolic substances in peach fruit. Additionally, the expression of structural genes and transcription factors related to phenolic synthesis was regulated by bagging and light conditions. These findings provide a foundation for understanding the regulation mechanism of light on the synthesis of phenolic compounds in peach fruit.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Melatonin enhances the synthesis of volatile esters and lactones in apricot during low temperature storage

Yanfang Zhang, Xinzhi Cui, Zhilei Du, Xiulian Li, Bangdi Liu, Meng Liu, Xiangquan Zeng, Fengjun Guo, Xinguang Fan, Shuyang Sun

Summary: In this study, melatonin treatment effectively improved the aroma quality of apricots during low temperature storage by maintaining firmness and soluble solids content, inhibiting ethylene production, and regulating enzyme activities related to aroma synthesis.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Foliar treatment with melatonin modulates photosynthetic and antioxidant responses in Silybum marianum L. under salt stress

Sang-Mo Kang, Shifa Shaffique, Md. Injamum-Ul-Hoque, Sarah Owdah Alomrani, Yong-Sung Park, In-Jung Lee

Summary: Salinity is a global environmental problem that affects the physiology and morphology of plants. Melatonin has been found to improve photosynthesis, antioxidant activities, and seedling characteristics in milk thistle plants exposed to salinity stress, thereby enhancing their salt tolerance.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Key insights for improved climate change adaptation strategies: Assessing chilling and heat requirements of Prunus cultivars (Prunus sp.) in warm climate regions

Nadia Borgini, Haifa Benmoussa, Mohamed Ghrab, Mehdi Ben Mimoun

Summary: This study investigates the agroclimatic requirements of Prunus species cultivars growing in warm areas using Partial Least Squares regression. The findings reveal that the chilling and heat requirements of the cultivars appear discontinuous, with overlaps or transition periods between the two phases. The warm mean temperatures occurring during the chilling period are the main determinant of the flowering of the studied cultivars.

SCIENTIA HORTICULTURAE (2024)

Review Horticulture

Musa species variation, production, and the application of its processed flour: A review

Kayise Hypercia Maseko, Thierry Regnier, Belinda Meiring, Obiro Cuthbert Wokadala, Tonna Ashim Anyasi

Summary: Bananas are a significant tropical fruit with diverse cultivars, providing essential minerals, vitamins, and phytochemicals. The Cavendish group is preferred, but identifying suitable cultivars and maturity stages is crucial for various applications.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Assessing the effect of deficit drip irrigation regimes on crop performance of eggplant

Godfrey Ouma, Joshua Wanyama, Isa Kabenge, Joseph Jjagwe, Mukulu Diana, John Muyonga

Summary: Irrigation plays a crucial role in increasing eggplant yields amidst climate change, but the deficit irrigation level for optimal growth remains uncertain. This study examined the effect of deficit drip irrigation on eggplant performance and found that irrigating at 75% field capacity maximizes yield and water saving in sandy clay loam soil.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Estimation of above ground biomass, biophysical and quality parameters of spinach (Spinacia Oleracea L.) using Sentinel-2 to support the supply chain

Andrea Marcone, Giorgio Impollonia, Michele Croci, Henri Blandinieres, Stefano Amaducci

Summary: This study used Sentinel-2 satellite images to estimate biophysical and biochemical parameters of spinach crops and found that canopy-level parameters were estimated more accurately. The estimation of the canopy-scale parameter AGB using MCARI showed the highest accuracy, while the estimation of the leaf-scale parameter LCC using NDWI showed the lowest accuracy. At the field scale, the validation results for AGB estimation using SR were the best.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Integrating hormones and transcriptome to explore the formation of dwarf and lateral buds in Capsicum

Chengsheng Gong, Guangjun Guo, Baogui Pan, Changzhou Gao, Xianwei Zhu, Shubin Wang, Jinbing Liu, Weiping Diao

Summary: This study investigated the role of key cytokines and metabolic factors in the formation of plant-type traits in pepper. Through integrated analysis of RNA-seq and metabolite determination, the study identified the low content of gibberellin and high content of auxin as important factors causing plant dwarfing, and jasmonic acid as a metabolic factor affecting branch traits. A total of 131 candidate genes involved in metabolite synthesis and the formation of plant-type traits were identified.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Interactive effects of drought and cadmium stress on adzuki bean seedling growth, DNA damage repair, and Cd accumulation

Yue Ma, Jia-Chen Hu, Yang Yu, Xin Cheng, Yan-Li Du, Qiang Zhao, Ji-Dao Du

Summary: Cadmium and drought stress significantly inhibited the growth of adzuki bean seedling plants, with the combined stress showing the highest degree of inhibition. Cd+D treatment reduced Cd accumulation in adzuki bean seedling roots. The treatment altered antioxidant enzyme activities and cell cycle phases in the roots, leading to changes in reactive oxygen species content.

SCIENTIA HORTICULTURAE (2024)

Article Horticulture

Genotypic differences in water deficit effects on leaf and crown traits in mature field-grown cocoa

Lucette Adet, Danae M. A. Rozendaal, Arthur Tapi, Pieter A. Zuidema, Philippe Vaast, Niels P. R. Anten

Summary: This study investigated the effects of water stress on cocoa trees and found that they are highly sensitive to water stress, with different genotypes exhibiting varied responses. Potassium application did not mitigate the negative effects of water stress. There was significant variation among genotypes in terms of leaf and crown traits, and positive interactions between genotype and irrigation were observed. These findings provide insights into the acclimation strategies of cocoa trees and can be useful for selecting drought-tolerant genotypes.

SCIENTIA HORTICULTURAE (2024)