4.7 Article

Late Paleozoic provenance shift in the south-central North China Craton: Implications for tectonic evolution and crustal growth

期刊

GONDWANA RESEARCH
卷 25, 期 1, 页码 383-400

出版社

ELSEVIER
DOI: 10.1016/j.gr.2013.04.009

关键词

Zircon U-Pb dating; Hf isotopic analyses; Detrital zircon; North China Craton; Crustal growth curve

资金

  1. National S&T Major Project of China [2011ZX05035-005-001HZ]
  2. Natural Science Foundation of China [41272211]
  3. State Key Laboratory for Mineral Deposits Research of Nanjing University [2009-I-01, ZZKT-201110]
  4. UNESCO-IUGS [592]

向作者/读者索取更多资源

U-Pb geochronologic and Hf isotopic results of seven sandstones collected from Late Carboniferous through Early Triassic strata of the south-central part of the North China Craton record a dramatic provenance shift near the end of the Late Carboniferous. Detrital zircons from the Late Carboniferous sandstones are dominated by the Early Paleozoic components with positive epsilon(Hf)(wt) values, implying the existence of a significant volume of juvenile crust at this age in the source regions. Moreover, there are also three minor peaks at ca. 2.5 Ga, 1.87 Ga and 1.1-0.9 Ga. Based on our new data, in conjunction with existing zircon ages and Hf isotopic data in the North China Craton (NCC), Central China Orogenic Belt (CCOB) and Central Asian Orogenic Belt (CAOB), it can be concluded that Early Paleozoic and Neoproterozoic detritus in the south-central NCC were derived from the CCOB. Zircons with ages of 1.9-1.7 Ga were derived from the NCC. However, the oldest components can't be distinguished, possibly from either the NCC or the CCOB, or both. In contrast, detrital zircons from the Permian and Triassic sandstones are characterized by three major groups of U-Pb ages (2.6-2.4 Ga, 1.9-1.7 Ga and Late Paleozoic ages). Specially, most of the Late Paleozoic zircons show negative epsilon(Hf)(t) values, similar to the igneous zircons from intrusive rocks of the Inner Mongolia Paleo-Uplift (IMPU), indicating that the Late Paleozoic detritus were derived from the northern part of the NCC. This provenance shift could be approximately constrained at the end of the Late Carboniferous and probably hints that tectonic uplift firstly occurred between the CCOB and the NCC as a result of the collision between the South and North Qinling microcontinental terranes, and then switched to the domain between the CAOB and the NCC. Additionally, on the basis of Lu-Hf isotopic data, we reveal the pre-Triassic crustal growth history for the NCC. In comparison among the three crustal growth curves obtained from modern river sands, our samples, and the Proterozoic sedimentary rocks, we realize that old components are apparently underestimated by zircons from the younger sedimentary rocks and modern river sands. Hence, cautions should be taken when using this method to investigate growth history of continental crust. (C) 2013 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据