4.6 Article

Scaling laws, force balances and dynamo generation mechanisms in numerical dynamo models: influence of boundary conditions

期刊

GEOPHYSICAL JOURNAL INTERNATIONAL
卷 199, 期 1, 页码 514-532

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggu274

关键词

Numerical solutions; Dynamo: theories and simulations; Planetary interiors

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Foundation for Innovation under auspices of Compute Canada
  3. Government of Ontario
  4. Ontario Research Fund - Research Excellence
  5. University of Toronto

向作者/读者索取更多资源

We investigate the influence of different thermal and velocity boundary conditions on numerical geodynamo models. We concentrate on the implications for magnetic field morphology, heat transport scaling laws, force balances and generation mechanisms. The field morphology most strongly depends on the local Rossby number, but there is some variation in the dipolarity of the field with boundary condition. Scaling laws also depend on the boundary conditions, but a diffusivity-free scaling is a good first order approximation for all our dipolar models. Our multipolar models, however, obey different scaling laws from dipolar models implying a different force balance in these models. We find that our dipolar models have a stronger degree of Lorentz-Coriolis balance compared to our multipolar models which have a stronger degree of Lorentz-inertial balance.The models with a stronger Lorentz-Coriolis dominance can be generated by either alpha omega, alpha(2)omega or alpha(2) mechanisms whereas the models with a stronger Lorentz-inertial balance are all alpha(2) dynamos. These results imply that some caution is necessary when extrapolating results from dynamo models to Earth-like parameters since the choice of boundary conditions can have important effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Editorial Material Astronomy & Astrophysics

Magnetic field modeling for Mercury using dynamo models with a stable layer and laterally variable heat flux

ZhenLiang Tian, Maria T. Zuber, Sabine Stanley

ICARUS (2015)

Article Multidisciplinary Sciences

Reconciling past changes in Earth's rotation with 20th century global sea-level rise: Resolving Munk's enigman

Jerry X. Mitrovica, Carling C. Hay, Eric Morrow, Robert E. Kopp, Mathieu Dumberry, Sabine Stanley

SCIENCE ADVANCES (2015)

Article Geochemistry & Geophysics

Performance benchmarks for a next generation numerical dynamo model

Hiroaki Matsui, Eric Heien, Julien Aubert, Jonathan M. Aurnou, Margaret Avery, Ben Brown, Bruce A. Buffett, Friedrich Busse, Ulrich R. Christensen, Christopher J. Davies, Nicholas Featherstone, Thomas Gastine, Gary A. Glatzmaier, David Gubbins, Jean-Luc Guermond, Yoshi-Yuki Hayashi, Rainer Hollerbach, Lorraine J. Hwang, Andrew Jackson, Chris A. Jones, Weiyuan Jiang, Louise H. Kellogg, Weijia Kuang, Maylis Landeau, Philippe Marti, Peter Olson, Adolfo Ribeiro, Youhei Sasaki, Nathanael Schaeffer, Radostin D. Simitev, Andrey Sheyko, Luis Silva, Sabine Stanley, Futoshi Takahashi, Shin-ichi Takehiro, Johannes Wicht, Ashley P. Willis

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS (2016)

Article Geochemistry & Geophysics

On the secular variation of Saturn's magnetic field

S. Stanley, J. Bloxham

PHYSICS OF THE EARTH AND PLANETARY INTERIORS (2016)

Article Geochemistry & Geophysics

Subsurface density structure of Taurus-Littrow Valley using Apollo 17 gravity data

N. Urbancic, R. Ghent, C. L. Johnson, S. Stanley, D. Hatch, K. A. Carroll, W. B. Garry, M. Talwani

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS (2017)

Article Astronomy & Astrophysics

INTERIOR STRUCTURE OF WATER PLANETS: IMPLICATIONS FOR THEIR DYNAMO SOURCE REGIONS

Bob Yunsheng Tian, Sabine Stanley

ASTROPHYSICAL JOURNAL (2013)

Article Geochemistry & Geophysics

Time-dependent rotational stability of dynamic planets with elastic lithospheres

N. -H. Chan, J. X. Mitrovica, A. Daradich, J. R. Creveling, I. Matsuyama, S. Stanley

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS (2014)

Article Geosciences, Multidisciplinary

Sensitivity of the Geomagnetic Octupole to a Stably Stratified Layer in the Earth's Core

C. Yan, S. Stanley

GEOPHYSICAL RESEARCH LETTERS (2018)

Editorial Material Geochemistry & Geophysics

Thank You to Our 2018 Peer Reviewers

Steven A. Hauck, David Baratoux, Sabine Stanley

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS (2019)

Editorial Material Geochemistry & Geophysics

In Appreciation of Our 2019 Peer Reviewers

Laurent G. J. Montesi, Steven A. Hauck, David Baratoux, Anni Maattanen, A. Deanne Rogers, Sabine Stanley

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS (2020)

Article Geochemistry & Geophysics

Iridium Communications Satellite Constellation Data for Study of Earth's Magnetic Field

Brian J. Anderson, Regupathi Angappan, Ankit Barik, Sarah K. Vines, Sabine Stanley, Pietro N. Bernasconi, Haje Korth, Robin J. Barnes

Summary: The study assesses the use of Iridium Communications magnetometer data for Earth's magnetic field characterization from 2010 to 2015. Residuals between the data and IGRF-11 show consistent patterns evolving gradually over the years. Spherical harmonic coefficients computed for each quiet day help identify artifacts at orbit precession and seasonal periods, which are then removed by notch filtering.

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS (2021)

Article Geochemistry & Geophysics

Dynamo Simulations of Jupiter's Magnetic Field: The Role of Stable Stratification and a Dilute Core

K. M. Moore, A. Barik, S. Stanley, D. J. Stevenson, N. Nettelmann, R. Helled, T. Guillot, B. Militzer, S. Bolton

Summary: Understanding the interior structure of Jupiter is crucial for studying planetary accretion models. Recent findings suggest the presence of stable stratification in the form of an upper layer and a potentially stratified dilute core within the planet. However, the equations of state for hydrogen and helium remain uncertain. In this study, high-resolution numerical magnetohydrodynamic simulations of Jupiter's magnetic field are used to constrain the extent of stable stratification. The results indicate that an upper stably stratified layer helps explain Jupiter's magnetic field and winds, while an entirely stably stratified dilute core yields worse fits. These findings suggest that alternative modalities may be required if a dilute core is present.

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS (2022)

Article Geosciences, Multidisciplinary

Recipe for a Saturn-Like Dynamo

C. Yan, S. Stanley

Summary: The study reveals that the characteristics of Saturn's magnetic field are sensitive to the properties of a stably stratified helium rain-out layer and thermal perturbations at the top of the layer.

AGU ADVANCES (2021)

Article Astronomy & Astrophysics

NON-AXISYMMETRIC FLOWS ON HOT JUPITERS WITH OBLIQUE MAGNETIC FIELDS

Konstantin Batygin, Sabine Stanley

ASTROPHYSICAL JOURNAL (2014)

暂无数据