4.7 Article

Synthesized design of a fuzzy logic controller for an underactuated unicycle

期刊

FUZZY SETS AND SYSTEMS
卷 207, 期 -, 页码 77-93

出版社

ELSEVIER
DOI: 10.1016/j.fss.2012.04.004

关键词

Fuzzy logic controller; Underactuated unicycle; Model-free design; Model-based design; Iterative learning tuning

向作者/读者索取更多资源

In this paper, we propose synthesized design of a fuzzy logic controller (FLC) for control of an underactuated unicycle system. The PLC objective is velocity control of the wheel while keeping the pendulum upright, which is an unstable equilibrium. The synthesized design consists of three phases. First, the FLC structures including the number of rules, membership functions, inference and parametric relations are chosen based on heuristic knowledge about the unicycle. Second, on the basis of a linearized model and linear feedback, the PLC output parameters are determined quantitatively for stabilization of the unicycle. Third, the FLC output parameters are tuned using an iterative learning tuning (ILT) algorithm, which minimizes an objective function that specifies the desired unicycle performance. The rationale for the synthesized FLC design is full utilization of the available information, which is achieved by combining model-based and model-free designs, and hence improves the FLC performance. We minimize the number of FLC rules and fuzzy labels. Six rules are used for regulation or setpoint tasks, whereas 10 rules are used with extra integral control to eliminate steady-state errors induced by system uncertainties and disturbances. Only two fuzzy labels are adopted for each fuzzy variable. The ILT process consists of two phases, exploration for stabilization and exploitation for better performance. The effectiveness of the proposed FLC is validated using intensive simulations and comparisons. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据