4.5 Article

Fatty acid metabolism in European sea bass (Dicentrarchus labrax): effects of n-6 PUFA and MUFA in fish oil replaced diets

期刊

FISH PHYSIOLOGY AND BIOCHEMISTRY
卷 39, 期 4, 页码 941-955

出版社

SPRINGER
DOI: 10.1007/s10695-012-9753-7

关键词

Dicentrarchus labrax; Canola oil; Cottonseed oil; Delta 6-desaturase; Elongase; beta-oxidation

资金

  1. Scientific & Technological Research Council of Turkey (TUBITAK) [106O195]
  2. University of Cukurova [SUF2011D1]

向作者/读者索取更多资源

Monounsaturated fatty acids (MUFA)-rich and n-6 polyunsaturated fatty acid (n-6 PUFA)-rich vegetable oils are increasingly used as fish oil replacers for aquafeed formulation. The present study investigated the fatty acid metabolism in juvenile European sea bass (Dicentrarchus labrax, 38.4 g) fed diets containing fish oil (FO, as the control treatment) or two different vegetable oils (the MUFA-rich canola/rapeseed oil, CO; and the n-6 PUFA-rich cottonseed oil, CSO) tested individually or as a 50/50 blend (CO/CSO). The whole-body fatty acid balance method was used to deduce the apparent in vivo fatty acid metabolism. No effect on growth performance and feed utilization was recorded. However, it should be noted that the fish meal content of the experimental diets was relatively high, and thus the requirement for n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) may have likely been fulfilled even if dietary fish oil was fully replaced by vegetable oils. Overall, relatively little apparent in vivo fatty acid bioconversion was recorded, whilst the apparent in vivo beta-oxidation of dietary fatty acid was largely affected by the dietary lipid source, with higher rate of beta-oxidation for those fatty acids which were provided in dietary surplus. The deposition of 20:5n-3 and 22:6n-3, as % of the dietary intake, was greatest for the fish fed on the CSO diet. It has been shown that European sea bass seems to be able to efficiently use n-6 PUFA for energy substrate, and this may help in minimizing the beta-oxidation of the health benefiting n-3 LC-PUFA and thus increase their deposition into fish tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据