4.5 Article

GENETIC ARCHITECTURE AND POSTZYGOTIC REPRODUCTIVE ISOLATION: EVOLUTION OF BATESON-DOBZHANSKY-MULLER INCOMPATIBILITIES IN A POLYGENIC MODEL

期刊

EVOLUTION
卷 64, 期 3, 页码 675-693

出版社

WILEY
DOI: 10.1111/j.1558-5646.2009.00861.x

关键词

Compensatory mutations; epistasis; hybrid load; speciation

资金

  1. Norwegian Research Council
  2. Leiv Eiriksson Mobility
  3. National Science Foundation [0444157, 0344417]
  4. Norwegian Research Council [177857]
  5. Division Of Environmental Biology
  6. Direct For Biological Sciences [0344417] Funding Source: National Science Foundation
  7. Division Of Environmental Biology
  8. Direct For Biological Sciences [0444157] Funding Source: National Science Foundation

向作者/读者索取更多资源

The Bateson-Dobzhansky-Muller model predicts that postzygotic isolation evolves due to the accumulation of incompatible epistatic interactions, but few studies have quantified the relationship between genetic architecture and patterns of reproductive divergence. We examined how the direction and magnitude of epistatic interactions in a polygenic trait under stabilizing selection influenced the evolution of hybrid incompatibilities. We found that populations evolving independently under stabilizing selection experienced suites of compensatory allelic changes that resulted in genetic divergence between populations despite the maintenance of a stable, high-fitness phenotype. A small number of loci were then incompatible with multiple alleles in the genetic background of the hybrid and the identity of these incompatibility loci changed over the evolution of the populations. For F-1 hybrids, reduced fitness evolved in a window of intermediate strengths of epistatic interactions, but F-2 and backcross hybrids evolved reduced fitness across weak and moderate strengths of epistasis due to segregation variance. Strong epistatic interactions constrained the allelic divergence of parental populations and prevented the development of reproductive isolation. Because many traits with varying genetic architectures must be under stabilizing selection, our results indicate that polygenetic drift is a plausible hypothesis for the evolution of postzygotic reproductive isolation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据