4.6 Article

Effect of ions (K+, Mg2+, Ca2+ and SO42-) and temperature on energy generation performance of reverse electrodialysis stack

期刊

ELECTROCHIMICA ACTA
卷 290, 期 -, 页码 282-290

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2018.09.015

关键词

Salinity gradient; Reverse electrodialysis; Power density; Coexisting ion; Temperature

资金

  1. Program for the Top Young Innovative Talents of Hebei Province [2013-17, 2016-9]
  2. Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) [IRT14R14]

向作者/读者索取更多资源

For investigating the influence of coexisting ions (K+, Mg2+, Ca2+ and SO42-), temperature and their synergistic effect on energy generation by reverse electrodialysis, two series of cells dividing with Yadeshi membranes are fed with different solutions at 10 degrees C, 25 degrees C and 40 degrees C. The presence of K+, Mg2+, Ca2+ and SO42- results in lower open circuit voltage, higher internal resistance and lower maximum power density, and the influence order of ions coexisting with NaCl is Ca2+ > Mg2+ (>SO42-) > K+. With the temperature risen, the open circuit voltage and the internal resistance show a trend of increase and decrease respectively, resulting in a bigger power density. Based on the synergistic effect of coexisting ions and temperature, the maximum power density of the pure NaCl system shows a greater increment (0.15 W m(-2)) than that of NaCl-CaCl2 (0.10 W m(-2)) and NaCl-MgCl2 (0.11 W m(-2)) systems when temperature increases from 10 degrees C to 40 degrees C. Furthermore, the transport quantities of ions in each system increased with temperature at different degrees, and the uphill of Ca2+ and Mg2+ was more obvious, which can reasonably explain the different effects of temperature on the maximum power density. Moreover, these results are further verified when simulated concentrated seawater is used for both the Yadeshi- and Fujifilm membranes, and the Fujifilm shows better energy generation performance mainly due to a lower internal resistance. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据