4.6 Article

Synthesis of porous CoFe2O4 octahedral structures and studies on electrochemical Li storage behavior

期刊

ELECTROCHIMICA ACTA
卷 116, 期 -, 页码 164-169

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2013.11.054

关键词

CoPe(2)O(4); Octahedrons; Hydrothermal synthesis; Electrochemical performance; Lithium-ion batteries

资金

  1. Natural Science Foundation of China [30800256]
  2. Self-Determined and Innovative Research Funds of WUT [20101a012]
  3. Young Teachers' Growth Plan of Hunan University [2012-118]

向作者/读者索取更多资源

Ternary transition metal oxides are the important alternatives to commercial graphite for future lithiumion batteries (LIBs). In this work, porous Co2FeO4 octahedral structures were synthesized by annealing the precursor from hydrothermal process, and the electrochemical properties of the samples as anode for LIBs were studied. Electrochemical measurements demonstrate that porous Co2FeO4 structures with octahedral shape display remarkably high discharge capacity, which is even slightly higher than the theoretical value of Co2FeO4. The specific capacity retention of Co2FeO4 porous structure annealed at 700 C reaches ca. 96.4% of that in the first cycle after 50 cycles. It is expected that the as-synthesized porous Co2FeO4 octahedrons can be a promising anode material for LIBs. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Materials Science, Multidisciplinary

Perspective on low-temperature electrolytes for LiFePO4-based lithium-ion batteries

Xianglong Chen, Yudong Gong, Xiu Li, Feng Zhan, Xinhua Liu, Jianmin Ma

Summary: The olivine-type lithium iron phosphate (LiFePO4) is a promising and widely used cathode material for high-performance lithium-ion batteries. However, its performance is limited in cold climates. Therefore, designing low-temperature electrolytes is crucial for the further commercial application of LiFePO4 batteries.

INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS (2023)

Article Biochemistry & Molecular Biology

DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology

Yuxin Zhang, Jie Jiang, Jiongming Ma, Zhen Wei, Yue Wang, Bowen Song, Jia Meng, Guifang Jia, Joao Pedro de Magalhaes, Daniel J. Rigden, Daiyun Hang, Kunqi Chen

Summary: Mapping RNA modifications with advanced technologies has revolutionized our understanding of them. Current modification profiling methods are limited and require selective treatments. Direct RNA sequencing enables the direct study of modifications and has the potential to overcome the limitations of previous methods. The DirectRMDB database provides a fresh perspective on RNA modifications and allows exploration of the epitranscriptome in an isoform-specific manner.

NUCLEIC ACIDS RESEARCH (2023)

Article Chemistry, Multidisciplinary

Stable Non-flammable Phosphate Electrolyte for Lithium Metal Batteries via Solvation Regulation by the Additive

Gaoxue Jiang, Jiandong Liu, Zhongsheng Wang, Jianmin Ma

Summary: A high-performance non-flammable electrolyte is designed by using 1.5 m LiTFSI in propylene carbonate (PC)/triethyl phosphate (TEP) (4:1 by vol.) with 4-nitrophenyl trifluoroacetate (TFANP) as the additive. This electrolyte can facilitate the formation of LiF-rich solid electrolyte interphase (SEI) on the Li anode surface and cathode electrolyte interphase (CEI) on the cathode surface, suppressing the growth of Li dendrites and reducing the continuous electrolyte consumption. The Li||LiNi0.6Co0.2Mn0.2O2 battery with this electrolyte shows excellent cycling stability and rate performance.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Catalytically Induced Robust Inorganic-Rich Cathode Electrolyte Interphase for 4.5 V Li||NCM622 Batteries

Zhongsheng Wang, Chunlei Zhu, Jiandong Liu, Xinhong Hu, Yulu Yang, Shihan Qi, Huaping Wang, Daxiong Wu, Junda Huang, Pengbin He, Jianmin Ma

Summary: Tailoring the inorganic components of the CEI and SEI in lithium metal batteries is crucial for improving their cycling performance. By using PFBNBS as an electrolyte additive guided by functional groups, the species and inorganic content of the CEI/SEI are enriched with a gradient distribution. Furthermore, the catalytic effect of the NCM622 cathode on the decomposition of PFBNBS is proposed. This tailored electrolyte enables the formation of an inorganic-rich CEI on NCM622 and an increased inorganic content in the SEI, leading to superior electrochemical performance and inhibiting electrolyte decomposition.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Optimizing NaF-Rich Solid Electrolyte Interphase for Stabilizing Sodium Metal Batteries by Electrolyte Additive

Chunlei Zhu, Daxiong Wu, Zhongsheng Wang, Huaping Wang, Jiandong Liu, Kanglong Guo, Quanhui Liu, Jianmin Ma

Summary: NaF-rich electrode-electrolyte interphases play a crucial role in the cycling stability of sodium metal batteries. The addition of perfluorobenzene (PFB) promotes the formation of NaF-rich solid electrolyte interphases (SEI). PFB can extract a part of EC with the lowest solvation energy, allowing more PF6- to participate in the solvation layer and form an anion-aggregated solvation sheath, thus facilitating the decomposition of PF6- to produce NaF. The Na||Na symmetric cells with this electrolyte exhibit superior cycling performance and the Na||Na3V2(PO4)(2)O2F batteries achieve high capacity retention after 500 cycles.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Dynamic Ion Sieve as the Buffer Layer for Regulating Li+ Flow in Lithium Metal Batteries

Junda Huang, Jian He, Quanhui Liu, Jianmin Ma

Summary: Realizing uniform Li+ flow is crucial for achieving even Li deposition in lithium metal batteries (LMBs). In this study, a dynamic ion sieve concept is proposed, which involves designing a buffer layer near the Li anode surface to regulate Li+ spatial arrangement by introducing TMPB into the carbonate electrolyte. The buffer layer induced by TMP+ allows solvated Li+ sufficient time to redistribute and accumulate on the Li anode surface, resulting in a uniform and concentrated Li+ flow. Additionally, TFSI- participates in the formation of an inorganic-rich solid electrolyte interphase (SEI) with Li3N, enhancing the Li+ conductivity of the SEI. As a result, the stable and uniform Li deposition achieved excellent cycling performance in Li||Li symmetric cells for up to 1000 hours at 0.5 mA cm(-2). Furthermore, the Li||NCM622 full cell exhibited excellent cycling stability with a high-capacity retention rate of 66.7% after 300 cycles.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Armor-like Inorganic-rich Cathode Electrolyte Interphase Enabled by the Pentafluorophenylboronic Acid Additive for High-voltage Li||NCM622 Batteries

Yulu Yang, Huaping Wang, Chunlei Zhu, Jianmin Ma

Summary: Lithium metal batteries (LMBs) with high-voltage nickel-rich cathode and Li metal anode have the potential for high capacity and power density, but electrolytes that can withstand oxidation on the cathode at high cut-off voltage are urgently needed. This study presents an armor-like inorganic-rich cathode electrolyte interphase (CEI) strategy using pentafluorophenylboronic acid (PFPBA) as an additive to explore oxidation-resistant electrolytes for sustaining 4.8 V Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) batteries. The CEI, which consists of armored lithium borate and abundant LiF, improves the mechanical stability and Li+ conductivity, leading to excellent cycling performance and capacity retention even at 4.8 V cut-off voltage.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Dynamic Hydrogen-Bond Network as a Modulator of Bismuth-Antimony Complex Anodes for Self-Healable and Wider Temperature Adaptive Potassium Ion Batteries

Yihui Liu, Fusheng Liu, Bingbing Liu, Yaoyao Xiao, Guohui Qin, Jianmin Ma

Summary: In this study, a new type of antimony (Sb)-based anode material Bi0.67Sb1.33S3/PET@PTA was designed. The Bi0.67Sb1.33S3 nanospheres were embedded into in situ formed poly(3,4-ethylenedioxythiophene) crosslinked with polythioctic acid (PET@PTA), showing remarkable self-healing ability and wide temperature adaptability. The Bi0.67Sb1.33S3/PET@PTA exhibited excellent storage performance in potassium-ion batteries.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

In Situ Formed Gradient Composite Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes

Cai Hong Zhang, Tong Jin, Jiandong Liu, Jianmin Ma, Nian Wu Li, Le Yu

Summary: This study proposes a novel in situ formed artificial gradient composite solid electrolyte interphase (GCSEI) layer for highly stable lithium metal anodes. The GCSEI layer, composed of inner rigid inorganics and outer flexible polymers, enables uniform Li plating and accommodates volume change. The research demonstrates fast Li+ ion transport and diffusion kinetics, and exhibits excellent cycling stability.
Article Chemistry, Physical

In Situ Construction of Anode-Molecule Interface via Lone-Pair Electrons in Trace Organic Molecules Additives to Achieve Stable Zinc Metal Anodes

Huaming Yu, Dongping Chen, Quanyu Li, Chunshuang Yan, Zihao Jiang, Liangjun Zhou, Weifeng Wei, Jianmin Ma, Xiaobo Ji, Yuejiao Chen, Libao Chen

Summary: The addition of trace hexamethylenetetramine (HMTA) additive improves the reversibility and performance of zinc batteries.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Physical

Amide-Functional, Li3N/LiF-Rich Heterostructured Electrode Electrolyte Interphases for 4.6 V Li||LiCoO2 Batteries

Jiandong Liu, Mingguang Wu, Xin Li, Daxiong Wu, Huaping Wang, Junda Huang, Jianmin Ma

Summary: Constructing robust electrode electrolyte interphases (EEIs) with polar amide groups and a Li3N/LiF heterostructure can enhance the charge cut-off voltage of LiCoO2 at 4.6 V, improving the battery density and addressing the challenge of structural instability.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Physical

Conductive Li+ Moieties-Rich Cathode Electrolyte Interphase with Electrolyte Additive for 4.6 V Well-Cycled Li||LiCoO2 Batteries

Kanglong Guo, Chunlei Zhu, Huaping Wang, Shihan Qi, Junda Huang, Daxiong Wu, Jianmin Ma

Summary: Increasing the cut-off voltage of cathodes improves the energy density of Li||LiCoO2 batteries, but also leads to rapid battery degradation due to oxidation and deterioration. However, by using bis-(benzenesulfonyl)imide (BBSI) as an additive, a uniform and highly Li+ conductive cathode electrolyte interphase (CEI) is constructed, which stabilizes the batteries at 4.6 cut-off voltage and exhibits superior cycling and high-rate performance. The CEI, consisting of LiF and conductive Li+ moieties, improves Li+ migration, alleviates cathode degradation, and reduces other secondary degradation factors. Li||LiCoO2 batteries with 1% BBSI-containing electrolyte sustain 81.30% of initial capacity after 300 cycles at 0.5C, and 88.27% of initial capacity even after 500 cycles at 2C/3C.

ADVANCED ENERGY MATERIALS (2023)

Article Energy & Fuels

Multifunctional Electrolyte Additive for High-Nickel LiNi0.8Co0.1Mn0.1O2 Cathodes of Lithium-Metal Batteries

Yudong Zhang, Peng Wei, Bo Zhou, Hongshun Zhao, Zihao Wang, Jianmin Ma, Yurong Ren

Summary: In this study, ethoxy(pentafluoro)cyclotriphosphazene (PFPN) was used as an electrolyte additive to construct a stable electrolyte interphase, which could suppress gas generation and cathode corrosion in lithium-ion batteries. The addition of PFPN also improved the wettability of the separator and exhibited a flame-retardant effect.

ENERGY & FUELS (2023)

Article Computer Science, Information Systems

Neighboring-Part Dependency Mining and Feature Fusion Network for Person Re-Identification

Chuan Zhu, Wenjun Zhou, Yingjun Zhu, Jianmin Ma

Summary: This paper proposes a neighboring-part dependency mining and feature fusion network (NDMF-Net) to address the issue of existing methods ignoring less obvious features and spatial interdependencies. Experimental results demonstrate that our method is effective and achieves state-of-the-art performance.

IEEE ACCESS (2023)

Article Chemistry, Multidisciplinary

Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries

Huaming Yu, Dongping Chen, Xuyan Ni, Piao Qing, Chunshuang Yan, Weifeng Wei, Jianmin Ma, Xiaobo Ji, Yuejiao Chen, Libao Chen

Summary: In this study, l-carnitine (l-CN) is proposed as an efficient additive to stabilize both electrodes and extend the lifespan of aqueous Zn-ion batteries. The simultaneous presence of quaternary ammonium cations, COO- anions, and hydroxyl groups in a trace amount of added l-CN has a significant impact on the behavior of Zn2+ deposition/insertion and water molecule activity. The addition of l-CN leads to ultralong life in the symmetric cell with an 87-fold improvement in cycle life (over 6000 h, 1 mA cm(-2)/1 mA h cm(-2)) for dendrite-free Zn plating/stripping and enables the Zn//V2O5 full cell to achieve 3500 cycles with a high capacity retention.

ENERGY & ENVIRONMENTAL SCIENCE (2023)

Article Electrochemistry

Recent advances in Bio-mass by electrochemically strategies generated hydrogen gas production: Environmentally sustainable technologies innovation

Abdul Qayoom Mugheri, Shaista Khan, Ali Asghar Sangah, Aijaz Ahmed Bhutto, Muhammad Younis Laghari, Nadeem Ahmed Mugheri, Asif Ali Jamali, Arsalan Ahmed Mugheri, Nagji Sodho, Abdul Waheed Mastoi, Aftab Kandhro

Summary: Green hydrogen has the potential to transition to a pollution-free energy infrastructure. This study proposes a solution to produce hydrogen during the photoelectrochemical process, offering greater stability and control over chemical reactions. Techno-economic assessments show the efficiency and economic feasibility of co-producing value-added chemicals to enhance green hydrogen production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction

Danpeng Cheng, Wuxin Sha, Qigao Han, Shun Tang, Jun Zhong, Jinqiao Du, Jie Tian, Yuan-Cheng Cao

Summary: LiNixCoyMn1-x-yO2 (NCM) is a critical cathode material for lithium-ion batteries in electric vehicles. The aging of cathode/electrolyte interfaces leads to capacity degradation and long-term cycle instability. A novel neural network model called ACGNet is developed to predict electrochemical stability windows of crystals, allowing for high-throughput screening of coating materials. LiPO3 is identified as a promising coating material with high oxidation voltage and low cost, which significantly improves the cycle stability of NCM batteries. This study demonstrates the accuracy and potential of machine learning in battery materials.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Enhanced electrochemical performance of CuO/NiO/rGO for oxygen evolution reaction

P. Mohana, R. Yuvakkumar, G. Ravi, S. Arunmetha

Summary: This study successfully fabricates a non-noble CuO/NiO/rGO nanocomposite and investigates its electrocatalytic performance for oxygen evolution reaction in alkaline environment. The experimental results demonstrate that the electrocatalyst exhibits high activity and good stability, offering a new synthetic approach for sustainable energy production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Carbon nanofibers implanted porous catalytic metal oxide design as efficient bifunctional electrode host material for lithium-sulfur battery

Qiong Qu, Jing Guo, Hongyu Wang, Kai Zhang, Jingde Li

Summary: In this study, a bifunctional electrode host design consisting of carbon nanofibers implanted ordered porous Co-decorated Al2O3 supported on carbon nanotube film (CNTF) was proposed to address the shuttling effect of lithium polysulfides (LiPSs) and dendrite formation of metal lithium anode in lithium-sulfur (Li-S) batteries. The electrode exhibited excellent conductivity, efficient confinement of LiPSs, and catalytic conversion performance, resulting in high initial capacity and good capacity retention during cycling. As an anode, the electrode showed excellent Li+ diffusion performance and uniform lithium growth behavior, achieving a dendrite-free lithium electrode. The flexible pack cell assembled from these electrodes delivered a specific capacity of 972 mAh g(-1) with good capacity retention.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Spray coating of carbon nanoparticles as an effective and scalable method to enhance the performance of stainless steel anode in microbial electrochemical systems

Hong Zhang, Jin-Peng Yu, Chen Chen, Cheng-Yong Shu, Guang-Yu Xu, Jie Ren, Kai Cui, Wen-Fang Cai, Yun-Hai Wang, Kun Guo

Summary: Spray coating of acetylene black nanoparticles onto stainless steel mesh can enhance its biofilm formation ability and current density, making it a promising electrode material for microbial electrochemical systems. The spray coating method is simple, cost-effective, and suitable for large-size stainless steel electrodes.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical properties of Li-rich ternary cathode material Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase

Binpeng Hou, Jingjin Chen, Li-Hong Zhang, Xiaowen Shi, Zizhong Zhu

Summary: The electrochemical performance of Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase Li1.20Mn0.44Ni0.32Co0.04O1.83 was studied through first-principles calculations. The results show that the oxygen-deficient phase has a higher theoretical capacity but lower voltage platform and higher chemical activity compared to the pristine phase.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Post-mortem analysis of the Li-ion battery with charge/discharge deterioration in high- and low-temperature environments

Yating Du, Sayoko Shironita, Daisuke Asakura, Eiji Hosono, Yoshitsugu Sone, Yugo Miseki, Eiichi Kobayashi, Minoru Umeda

Summary: This study investigates the effect of high- and low-temperature environments on the charge-discharge performance of a Li-ion battery. The deterioration mechanisms of the battery at different temperatures are analyzed through various characterization techniques. The results indicate that the battery performance deteriorates more significantly at a low-temperature environment of 5 degrees C compared to higher temperatures. The understanding of the deterioration mechanisms can contribute to the development of safer battery usage methods.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A Co3O4-x/Co nanocomposite with synergistically enhanced electrochemical activity for reduction of nitrite to ammonia

Si-Si Shi, Zhi-Xiang Yuan, Fei Zhang, Ping Chen

Summary: In this study, a new nano-electrocatalyst was prepared, which exhibited superior electrocatalytic activity for the reduction of NO2- to ammonia in a neutral electrolyte, potentially due to the synergistic enhancement between Co3O4-x and Co.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Facile fabrication of NaOH nanorods on pencil graphite electrode for simultaneous electrochemical detection of natural antioxidants by deep eutectic solvent

Berna Dalkiran, Havva Bekirog

Summary: This study reports the use of deep eutectic solvents (DES) based on ethylene glycol and urea as low-cost and green electrolytes for enhancing electrochemical detection of natural antioxidants. The study successfully developed a disposable and effective electrochemical sensing platform for simultaneous determination of ascorbic acid (AA) and gallic acid (GA) using NaOH nanorods on a pencil graphite electrode. The proposed electrode showed improved analytical performance, with higher peak currents and shifted oxidation potentials in DES compared to BR buffer medium.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A three-dimensional fibrous tungsten-oxide/carbon composite derived from natural cellulose substance as an anodic material for lithium-ion batteries

Sijun Ren, Jianguo Huang

Summary: In this study, a novel bio-inspired nanofibrous WO3/carbon composite was synthesized using a facile hydrothermal method. The three-dimensional network structure of the composite alleviated the volume expansion of WO3 nanorods and enhanced the charge-transport kinetics. The optimized composite exhibited superior lithium storage properties.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Stabilizing the dissolution kinetics by interstitial Zn cations in CoMoO4 for oxygen evolution reaction at high potential

Zhilong Zheng, Yu Chen, Hongxia Yin, Hengbo Xiao, Xiangji Zhou, Zhiwen Li, Ximin Li, Jin Chen, Songliu Yuan, Junjie Guo, Haibin Yu, Zhen Zhang, Lihua Qian

Summary: This study found that interstitial Zn cations in CoMoO4 can modulate the dissolution kinetics of Mo cations and improve the OER performance. The interstitial Zn cations can prevent the dissolution of Co cations at high potential, enhancing the durability of the catalyst.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Molecular insights on optimizing nanoporous carbon-based supercapacitors with various electrolytes

Xiaobo Lin, Shern R. Tee, Debra J. Searles, Peter T. Cummings

Summary: Molecular dynamics simulations using the constant potential method were used to investigate the charging dynamics and charge storage of supercapacitors. The simulations revealed that the water-in-salt electrolyte exhibited the highest charge storage and significantly higher capacitance on the negative electrode. The varying contributions of different electrode regions to supercapacitor performance were also demonstrated.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Interaction between bilirubin oxidase and Au nanoparticles distributed over dimpled titanium foil towards oxygen reduction reaction

Wiktoria Lipinska, Vita Saska, Katarzyna Siuzdak, Jakub Karczewski, Karol Zaleski, Emerson Coy, Anne de Poulpiquet, Ievgen Mazurenko, Elisabeth Lojou

Summary: The spatial distribution of enzymes on electrodes is important for bioelectrocatalysis. In this study, controlled spatial distribution of gold nanoparticles on Ti nanodimples was achieved. The efficiency of enzymatic O2 reduction was found to be influenced by the size of the gold nanoparticles and their colocalization with TiO2. The highest stability of enzymatic current was observed with the largest gold nanoparticles.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical supercapacitor and water splitting electrocatalysis applications of self-grown amorphous Ni(OH)2 nanosponge-balls

Tariq M. Al-Hejri, Zeenat A. Shaikh, Ahmed H. Al-Naggar, Siddheshwar D. Raut, Tabassum Siddiqui, Hamdan M. Danamah, Vijaykumar V. Jadhav, Abdullah M. Al-Enizi, Rajaram S. Mane

Summary: This study explores a promising self-growth approach for the synthesis of nickel hydroxide (Ni(OH)2) nanosponge-balls on the surface of a nickel-foam (NiF) electrode. The modified NiF electrode, named Ni(OH)2@NiF, shows distinctive nanosponge-ball morphology and demonstrates excellent energy storage capability and electrocatalytic performance in both hydrogen and oxygen evolution reactions.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Versatile mixed ionic-electronic conducting binders for high-power, high-energy batteries

Rafael Del Olmo, Gregorio Guzman-Gonzalez, Oihane Sanz, Maria Forsyth, Nerea Casado

Summary: The use of Lithium-Ion Batteries (LIBs) is becoming increasingly extensive, and it is important to optimize the devices to achieve their maximum practical specific capacity. In this study, mixed ionic-electronic conducting (MIEC) binders based on PEDOT:PSS and PEDOT: PDADMA-TFSI were developed for Li-ion cathodes, and their performance was compared with conventional formulations. The influence of electrode formulations, including the addition of conducting carbon and an Organic Ionic Plastic Cristal (OIPC), was also analyzed. The proposed binders showed improved performance compared to conventional formulations with different electrolyte types and active materials.

ELECTROCHIMICA ACTA (2024)