4.6 Article

Electrochemical characteristics of Shewanella loihica on carbon nanotubes-modified graphite surfaces

期刊

ELECTROCHIMICA ACTA
卷 102, 期 -, 页码 252-258

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2013.04.039

关键词

Electrophoretic deposition; Carbon nanotubes; Electroactive biofilm; Shewanella loihica PV-4

资金

  1. IRCSET EMPOWER post-doctoral fellowship
  2. QUESTOR doctoral fellowship
  3. EU-FP7 Marie Curie International Reintegration Grant

向作者/读者索取更多资源

High specific surface and electrocatalytic activity of the electrode surface favour extracellular electron transfer from electrochemically active biofilms to polarized electrodes. We coated layer-by-layer carbon nanotubes (CNTs) on graphite electrodes through electrophoretic deposition, thus increasing the electrocatalytic activity. After determining the optimal number of CNT layers through electrochemical methods, we grew Shewanella loihica PV-4 biofilms on the CNT-coated electrodes to quantify the increase in extracellular electron transfer rate compared with unmodified electrodes. Current density on CNT-modified electrodes was 1.7 times higher than that observed on unmodified electrodes after 48 h from inoculation. Rapid microbial cells attachment on CNT-coated electrodes, as determined from scanning electronic microscopy, explained the rapid increase of the current. Also, the CNT reduced the charge transfer resistance of the graphite electrodes, as measured by Electrochemical Impedance Spectroscopy. However, the electrocatalytic activity of the CNT-coated electrode decreased as the biofilm grew thicker and covered the CNT-coating. These result confirmed that surface-modified electrodes improve the electron transfer rate in thin biofilms (<5 mu m), but are not feasible for power production in microbial fuel cells, where the biofilm thickness is much higher. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据