4.6 Article

The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 ≤ x ≤ 0.7) cathode materials

期刊

ELECTROCHIMICA ACTA
卷 66, 期 -, 页码 61-66

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2012.01.032

关键词

Lithium ion battery; Cathode material; Layered Li-rich; Co-precipitation

资金

  1. Chinese Academy of Sciences
  2. Natural Science Foundation of Ningbo [2011A610201, 2010A610150]
  3. Zhejiang Provincial Natural Science Foundation of China [R4100194, Y4100499]

向作者/读者索取更多资源

Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 <= x <= 0.7) cathode materials have been synthesized by a simple carbonate co-precipitation method. The effects of the lithium content on the structure, physical property, and electrochemical performance of the samples have been investigated. As the increase of lithium content, the Li1+xNi1/6Mn4/6O2.25+x/2 evolves from a mixture of hexagonal R-3m. monoclinic c2/m, and spinel Fd-3m structure to a mixture of hexagonal and monoclinic structure, accompanied with less cation mixing between Li+ and Ni2+. The increase of x value also affects the size of the primary particles and the roughness of the secondary particles. The Li1+xNi1/6Mn4/6O2.25+x/2 with appropriate lithium content, e.g., x=0.3. thereby small particle size, high pellet density, and low cation mixing, brings on the largest discharge capacity, which is more than 288 mAhg(-1) in the voltage range of 2.0-4.8V at 25 mAg(-1), and the lowest irreversible capacity loss of 47 mAhg(-1) among these cathode materials. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据