4.6 Article

Combined ultrasonication and electrokinetic remediation for persistent organic removal from contaminated kaolin

期刊

ELECTROCHIMICA ACTA
卷 54, 期 5, 页码 1403-1407

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2008.09.015

关键词

Soil remediation; Electrokinetics; Ultrasound; Persistent organic pollutants

资金

  1. Maj and Tor Nessling Foundation, Helsinki, Finland

向作者/读者索取更多资源

Electrokinetics alone (EK) and ultrasonically enhanced electrokinetics (EK-US) tests were studied to compare and examine the combining effects of these two methods on the removal of the three persistent organic pollutants (POPs): hexachlorobenzene (HCB), phenanthrene (PHE) and fluoranthene (FLU) from kaolin. Two pair tests were conducted into two experiments with different initial low (100 mg/kg) and high (500 mg/kg) contaminant concentrations. Results from the experiments show that. generally, EX-US tests have higher electroosmotic flow, higher current and better performance than EK alone tests. However, ultrasonic enhancement can increase the removal rate only up to about 10% more. Among the three POPs, HCB is the most difficult to treat because of its very stable Structure while the other two PAHs are easier to remove. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Green & Sustainable Science & Technology

Efficient detection and treatment of pharmaceutical contaminants to produce clean water for better health and environmental

Mokgehle R. Letsoalo, Thandiwe Sithole, Steven Mufamadi, Zvanaka Mazhandu, Mika Sillanpaa, Ajeet Kaushik, Tebogo Mashifana

Summary: The presence of pharmaceutical contaminants (PCs) in the environment, including water and aquatic life, is a continuous threat to human health and the natural cycle. In particular, the accumulation of non-degradable water-soluble residues in water streams and groundwater has raised serious concerns and is now a focus of the United Nations' Sustainable Development Goals 2030. This article explores the challenges and potential solutions for the selective detection and efficient remediation of PCs in wastewater using nano-enabled functional systems.

JOURNAL OF CLEANER PRODUCTION (2023)

Article Biochemistry & Molecular Biology

Biomolecule Protective and Photocatalytic Potential of Cellulose Supported MoS2/GO Nanocomposite

Muhammad Pervaiz, Muti Ur Rehman, Faisal Ali, Umer Younas, Mika Sillanpaa, Rizwan Kausar, Asma A. Alothman, Mohamed Ouladsmane, Mohammad Abdul Mazid

Summary: Cellulose/MoS2/GO nanocomposite was synthesized using a hydrothermal method. The formation of the nanocomposite was confirmed by UV-visible and FTIR spectroscopy, and its particle size and morphology were characterized. The nanocomposite exhibited promising biomolecule protective and photocatalytic potential, making it suitable for environmental remediation.

BIOINORGANIC CHEMISTRY AND APPLICATIONS (2023)

Article Thermodynamics

The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks

Yiran Yang, Gang Li, Tao Luo, Mohammed Al-Bahrani, Essam A. Al-Ammar, Mika Sillanpaa, Shafaqat Ali, Xiujuan Leng

Summary: This study aims to predict building energy consumption by using neural networks such as support vector machine, gated recurrent unit, extreme learning machine, long short-term memory, and shuffled frog leaping algorithm as an optimizer. Statistical results indicate that long short-term memory and support vector machine are the best neural networks for cooling and heating load forecast, respectively.

ENERGY (2023)

Article Engineering, Environmental

Electrocatalytic transformation of oxygen to hydroxyl radicals via three-electron pathway using nitrogen-doped carbon nanotube-encapsulated nickel nanocatalysts for effective organic decontamination

Mohua Li, Liang Bai, Shengtao Jiang, Mika Sillanpaa, Yingping Huang, Yanbiao Liu

Summary: Selective electrochemical reduction of oxygen (O-2) via 3e(-) pathway to produce hydroxyl radicals (HO) is a promising alternative to conventional electro-Fenton processes. A nitrogen-doped CNT-encapsulated Ni nanoparticle electrocatalyst (Ni@N-CNT) was developed, which exhibited high selectivity towards O-2 reduction and generation of HO•via 3e(-) pathway. The exposed graphitized N on the CNT shell and Ni nanoparticles encapsulated within the tip of the N-CNT played crucial roles in the generation of *HOOH through a 2e(-) oxygen reduction reaction. The encapsulated Ni nanoparticles at the tip of the N-CNT also facilitated the direct decomposition of electrogenerated *H2O2, leading to sequential generation of HO• through a 1e(-) reduction reaction on the N-CNT shell without inducing Fenton reaction. Improved bisphenol A (BPA) degradation efficiency was observed compared to conventional batch systems (97.5% vs 66.4%). Trials using Ni@N-CNT in a flow-through configuration demonstrated complete removal of BPA within 30 minutes (k = 0.12 min(-1)) with a limited energy consumption of 0.068 kW.h.g(-1) TOC.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Biochemistry & Molecular Biology

Thermodynamics Investigation and Artificial Neural Network Prediction of Energy, Exergy, and Hydrogen Production from a Solar Thermochemical Plant Using a Polymer Membrane Electrolyzer

Atef El Jery, Hayder Mahmood Salman, Rusul Mohammed Al-Khafaji, Maadh Fawzi Nassar, Mika Sillanpaa

Summary: Hydrogen production using polymer membrane electrolyzers is an effective method for generating environmentally friendly energy. The study analyzed the performance of the electrolyzers in the water electrolysis process and investigated the impact of variables such as radiation intensity and current density on hydrogen production. Machine-learning-based predictions were also conducted to forecast efficiency and hydrogen production rate in different scenarios.

MOLECULES (2023)

Article Green & Sustainable Science & Technology

Optimization of Engineering and Process Parameters for Vermicomposting

Rajesh Babu Katiyar, Suresh Sundaramurthy, Anil Kumar Sharma, Suresh Arisutha, Moonis Ali Khan, Mika Sillanpaa

Summary: Urbanization and population growth lead to a substantial increase in solid waste generation. Vermicomposting, which employs earthworms to recycle solid waste, proves to be a sustainable solution. This study explores the impact of earthworm-processed solid waste manure (vermicompost) on the growth, productivity, and chemical characteristics of chili and brinjal plants in different wooden reactors. The findings reveal that polyculture reactors with vermicompost soil exhibit significantly higher yields of both chili and brinjal compared to monoculture reactors.

SUSTAINABILITY (2023)

Article Horticulture

Efficiency of Using Superabsorbent Polymers in Reducing Mineral Fertilizer Rates Applied in Autumn Royal Vineyards

Mervat A. Ali, Samir G. Farag, Mika Sillanpaa, Saleh Al-Farraj, Mohamed E. A. El-Sayed

Summary: The addition of superabsorbent polymers (SAPs) to soil improves soil properties and increases plant yields. The goal of the study was to investigate the effectiveness of SAPs in reducing mineral fertilizer usage and producing high-quality grapes. The study was conducted in a private vineyard in Egypt over three seasons and found that increasing the amount of applied polymer significantly enhanced bud burst, growth parameters, nutrient content, and yield.

HORTICULTURAE (2023)

Article Chemistry, Physical

Low-cost date palm fiber activated carbon for effective and fast heavy metal adsorption from water: Characterization, equilibrium, and kinetics studies

Abir Melliti, Murat Yilmaz, Mika Sillanpaa, Bechir Hamrouni, Radek Vurm

Summary: In this study, low-cost activated carbon (AC-DPF) made from date palm fiber waste was used to remove lead and copper from water systems. AC-DPF had a large surface area and high adsorption capacity, with removal efficiencies of 92% for Pb(II) and 80% for Cu(II). The adsorption kinetics and thermodynamics of AC-DPF were investigated, and competitive and antagonistic effects were observed in the multicomponent system. Overall, AC-DPF showed great potential as a highly promising, effective, and feasible adsorbent for heavy metal removal.

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS (2023)

Article Chemistry, Analytical

Comprehensive study of the kinetics of combustion and pyrolysis of petrochemical sludge: Experimentation and application of artificial neural network

Shilpi Verma, Mamleshwar Kumar, Ramanpreet Kaur, Praveen Kumar, Mika Sillanpaa, Urska Lavrencic Stangar

Summary: This study analyzed the combustion and pyrolysis behaviors of PTA wastewater sludge and observed reaction orders, exothermic reactions, and auto gasification. The sludges were found to be promising for energy recovery due to their high calorific values. The experimental results were successfully validated using an artificial neural network model.

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS (2023)

Article Engineering, Environmental

The efficiency and mechanism of excess sludge-based biochar catalyst in catalytic ozonation of landfill leachate

Jingyao Zhang, Jiadong Liu, Bo Gao, Mika Sillanpaa, Jin Han

Summary: This study utilized biochar produced from dehydrated excess sludge to catalytically ozonate pollutants from landfill leachate. The biochar contained necessary catalytic sites originating from inorganic metals and organic matters in the sludge. These sites promoted the generation of reactive oxygen species and the removal rates of pollutants were enhanced by the synergistic interaction between microorganisms. The study provides insight into the mechanism of catalytic ozonation and offers a new approach for practical landfill leachate treatment.

JOURNAL OF HAZARDOUS MATERIALS (2023)

Article Chemistry, Physical

Preparation of graphene based nanofluids: Rheology determination and theoretical analysis of the molecular interactions of graphene nanoparticles

Imran Ali, Yu Pakharukov, F. K. Shabiev, E. Galunin, R. F. Safargaliev, S. A. Vasiljev, B. S. Ezdin, A. E. Burakov, Zeid A. Alothman, Mika Sillanpaa

Summary: In this study, graphene-based nanofluids were synthesized and their viscosities were determined. The molecular interactions of graphene nanoparticles were theoretically analyzed to understand the mechanisms affecting the viscosity of nanofluids. An analytical function describing the dependence of the relative viscosity on the concentration of graphene nanoparticles was obtained based on experimental results. It was found that the viscosity of the nanofluid was influenced by the structure of the graphene sheets, and the self-assembly of the nanoparticles played a crucial role in the viscosity changes.

JOURNAL OF MOLECULAR LIQUIDS (2023)

Article Chemistry, Physical

Effects of functionalized magnetic graphene oxide on the visible-light-induced photocatalytic activity of perovskite-type MTiO3 (M = Zn and Mn) for the degradation of Rhodamine B

Anasheh Mardiroosi, Ali Reza Mahjoub, Amir Hossein Cheshme Khavar, Rabah Boukherroub, Mika Sillanpaeae, Parminder Kaur

Summary: This study synthesizes a variety of perovskite-type titanates (MTiO3, M = Zn, and Mn) and loads them onto functionalized magnetic graphene oxide (EDFG) to produce MTiO3 @EDFG nanocomposites. The materials were fully characterized, and the MTiO3 @EDFG nanocomposites were found to exhibit enhanced photocatalytic activity for the degradation of Rhodamine B under visible light irradiation. The enhanced activity was attributed to the inhibition of nanoparticle aggregation, improved electron transfer, increased surface area, and extended absorption range.

JOURNAL OF MOLECULAR STRUCTURE (2023)

Article Biochemistry & Molecular Biology

Kinetics and Optimization of Metal Leaching from Heat-Resistant Nickel Alloy Solid Wastes

Imran Ali, Anastasya Gaydukova, Tatiana Kon'kova, Zeid Abdullah ALOthman, Mika Sillanpaa

Summary: This study investigated the acid leaching process of grinding waste from a heat-resistant nickel alloy. Optimal conditions for acid dissolution were established to maximize the extraction of nickel, the main component of the alloy. These results are significant for industry professionals in metal recovery and environmentalists in waste treatment.

MOLECULES (2023)

Review Engineering, Civil

A systematic review on application of electrokinetics in stabilization and remediation of problematic soils

B. K. Pandey, C. Shukla, M. Sillanpaeae, S. K. Shukla

Summary: The aim of this study was to evaluate the global research trends in the application of electrokinetics in soil stabilization and remediation. A total of 1562 articles published from 1960 to 2022 were analyzed using the Scopus database. The results show that publication output has significantly increased in the last 5 years, with China, USA, Spain, and South Korea being the top contributing countries.

INNOVATIVE INFRASTRUCTURE SOLUTIONS (2023)

Article Engineering, Chemical

Amoxicillin adsorption from aqueous solution by magnetite iron nanoparticles: molecular modelling and simulation

Shabnam Ahmadi, Soumya Ghosh, Alhadji Malloum, Mika Sillanpaa, Chinenye Adaobi Igwegbe, Prosper E. Ovuoraye, Joshua O. Ighalo

Summary: Molecular modelling and simulation were used to investigate the removal of amoxicillin (AMX) from water using iron nanoparticles (Fe3O4-NPs). The optimal conditions for adsorption were determined. The results showed that AMX molecules have high chemical potential and electrophilicity index, making them reactive. The adsorption of AMX onto Fe3O4-NPs was highly efficient under optimal conditions of pH 3, dosage of 0.5 g/L, AMX concentration of 60 mg/L, and a contact time of 60 min. Langmuir isotherm and pseudo-second-order kinetics provided the best fit to the adsorption data.

INDIAN CHEMICAL ENGINEER (2023)

Article Electrochemistry

Recent advances in Bio-mass by electrochemically strategies generated hydrogen gas production: Environmentally sustainable technologies innovation

Abdul Qayoom Mugheri, Shaista Khan, Ali Asghar Sangah, Aijaz Ahmed Bhutto, Muhammad Younis Laghari, Nadeem Ahmed Mugheri, Asif Ali Jamali, Arsalan Ahmed Mugheri, Nagji Sodho, Abdul Waheed Mastoi, Aftab Kandhro

Summary: Green hydrogen has the potential to transition to a pollution-free energy infrastructure. This study proposes a solution to produce hydrogen during the photoelectrochemical process, offering greater stability and control over chemical reactions. Techno-economic assessments show the efficiency and economic feasibility of co-producing value-added chemicals to enhance green hydrogen production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction

Danpeng Cheng, Wuxin Sha, Qigao Han, Shun Tang, Jun Zhong, Jinqiao Du, Jie Tian, Yuan-Cheng Cao

Summary: LiNixCoyMn1-x-yO2 (NCM) is a critical cathode material for lithium-ion batteries in electric vehicles. The aging of cathode/electrolyte interfaces leads to capacity degradation and long-term cycle instability. A novel neural network model called ACGNet is developed to predict electrochemical stability windows of crystals, allowing for high-throughput screening of coating materials. LiPO3 is identified as a promising coating material with high oxidation voltage and low cost, which significantly improves the cycle stability of NCM batteries. This study demonstrates the accuracy and potential of machine learning in battery materials.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Enhanced electrochemical performance of CuO/NiO/rGO for oxygen evolution reaction

P. Mohana, R. Yuvakkumar, G. Ravi, S. Arunmetha

Summary: This study successfully fabricates a non-noble CuO/NiO/rGO nanocomposite and investigates its electrocatalytic performance for oxygen evolution reaction in alkaline environment. The experimental results demonstrate that the electrocatalyst exhibits high activity and good stability, offering a new synthetic approach for sustainable energy production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Carbon nanofibers implanted porous catalytic metal oxide design as efficient bifunctional electrode host material for lithium-sulfur battery

Qiong Qu, Jing Guo, Hongyu Wang, Kai Zhang, Jingde Li

Summary: In this study, a bifunctional electrode host design consisting of carbon nanofibers implanted ordered porous Co-decorated Al2O3 supported on carbon nanotube film (CNTF) was proposed to address the shuttling effect of lithium polysulfides (LiPSs) and dendrite formation of metal lithium anode in lithium-sulfur (Li-S) batteries. The electrode exhibited excellent conductivity, efficient confinement of LiPSs, and catalytic conversion performance, resulting in high initial capacity and good capacity retention during cycling. As an anode, the electrode showed excellent Li+ diffusion performance and uniform lithium growth behavior, achieving a dendrite-free lithium electrode. The flexible pack cell assembled from these electrodes delivered a specific capacity of 972 mAh g(-1) with good capacity retention.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Spray coating of carbon nanoparticles as an effective and scalable method to enhance the performance of stainless steel anode in microbial electrochemical systems

Hong Zhang, Jin-Peng Yu, Chen Chen, Cheng-Yong Shu, Guang-Yu Xu, Jie Ren, Kai Cui, Wen-Fang Cai, Yun-Hai Wang, Kun Guo

Summary: Spray coating of acetylene black nanoparticles onto stainless steel mesh can enhance its biofilm formation ability and current density, making it a promising electrode material for microbial electrochemical systems. The spray coating method is simple, cost-effective, and suitable for large-size stainless steel electrodes.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical properties of Li-rich ternary cathode material Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase

Binpeng Hou, Jingjin Chen, Li-Hong Zhang, Xiaowen Shi, Zizhong Zhu

Summary: The electrochemical performance of Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase Li1.20Mn0.44Ni0.32Co0.04O1.83 was studied through first-principles calculations. The results show that the oxygen-deficient phase has a higher theoretical capacity but lower voltage platform and higher chemical activity compared to the pristine phase.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Post-mortem analysis of the Li-ion battery with charge/discharge deterioration in high- and low-temperature environments

Yating Du, Sayoko Shironita, Daisuke Asakura, Eiji Hosono, Yoshitsugu Sone, Yugo Miseki, Eiichi Kobayashi, Minoru Umeda

Summary: This study investigates the effect of high- and low-temperature environments on the charge-discharge performance of a Li-ion battery. The deterioration mechanisms of the battery at different temperatures are analyzed through various characterization techniques. The results indicate that the battery performance deteriorates more significantly at a low-temperature environment of 5 degrees C compared to higher temperatures. The understanding of the deterioration mechanisms can contribute to the development of safer battery usage methods.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A Co3O4-x/Co nanocomposite with synergistically enhanced electrochemical activity for reduction of nitrite to ammonia

Si-Si Shi, Zhi-Xiang Yuan, Fei Zhang, Ping Chen

Summary: In this study, a new nano-electrocatalyst was prepared, which exhibited superior electrocatalytic activity for the reduction of NO2- to ammonia in a neutral electrolyte, potentially due to the synergistic enhancement between Co3O4-x and Co.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Facile fabrication of NaOH nanorods on pencil graphite electrode for simultaneous electrochemical detection of natural antioxidants by deep eutectic solvent

Berna Dalkiran, Havva Bekirog

Summary: This study reports the use of deep eutectic solvents (DES) based on ethylene glycol and urea as low-cost and green electrolytes for enhancing electrochemical detection of natural antioxidants. The study successfully developed a disposable and effective electrochemical sensing platform for simultaneous determination of ascorbic acid (AA) and gallic acid (GA) using NaOH nanorods on a pencil graphite electrode. The proposed electrode showed improved analytical performance, with higher peak currents and shifted oxidation potentials in DES compared to BR buffer medium.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A three-dimensional fibrous tungsten-oxide/carbon composite derived from natural cellulose substance as an anodic material for lithium-ion batteries

Sijun Ren, Jianguo Huang

Summary: In this study, a novel bio-inspired nanofibrous WO3/carbon composite was synthesized using a facile hydrothermal method. The three-dimensional network structure of the composite alleviated the volume expansion of WO3 nanorods and enhanced the charge-transport kinetics. The optimized composite exhibited superior lithium storage properties.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Stabilizing the dissolution kinetics by interstitial Zn cations in CoMoO4 for oxygen evolution reaction at high potential

Zhilong Zheng, Yu Chen, Hongxia Yin, Hengbo Xiao, Xiangji Zhou, Zhiwen Li, Ximin Li, Jin Chen, Songliu Yuan, Junjie Guo, Haibin Yu, Zhen Zhang, Lihua Qian

Summary: This study found that interstitial Zn cations in CoMoO4 can modulate the dissolution kinetics of Mo cations and improve the OER performance. The interstitial Zn cations can prevent the dissolution of Co cations at high potential, enhancing the durability of the catalyst.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Molecular insights on optimizing nanoporous carbon-based supercapacitors with various electrolytes

Xiaobo Lin, Shern R. Tee, Debra J. Searles, Peter T. Cummings

Summary: Molecular dynamics simulations using the constant potential method were used to investigate the charging dynamics and charge storage of supercapacitors. The simulations revealed that the water-in-salt electrolyte exhibited the highest charge storage and significantly higher capacitance on the negative electrode. The varying contributions of different electrode regions to supercapacitor performance were also demonstrated.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Interaction between bilirubin oxidase and Au nanoparticles distributed over dimpled titanium foil towards oxygen reduction reaction

Wiktoria Lipinska, Vita Saska, Katarzyna Siuzdak, Jakub Karczewski, Karol Zaleski, Emerson Coy, Anne de Poulpiquet, Ievgen Mazurenko, Elisabeth Lojou

Summary: The spatial distribution of enzymes on electrodes is important for bioelectrocatalysis. In this study, controlled spatial distribution of gold nanoparticles on Ti nanodimples was achieved. The efficiency of enzymatic O2 reduction was found to be influenced by the size of the gold nanoparticles and their colocalization with TiO2. The highest stability of enzymatic current was observed with the largest gold nanoparticles.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical supercapacitor and water splitting electrocatalysis applications of self-grown amorphous Ni(OH)2 nanosponge-balls

Tariq M. Al-Hejri, Zeenat A. Shaikh, Ahmed H. Al-Naggar, Siddheshwar D. Raut, Tabassum Siddiqui, Hamdan M. Danamah, Vijaykumar V. Jadhav, Abdullah M. Al-Enizi, Rajaram S. Mane

Summary: This study explores a promising self-growth approach for the synthesis of nickel hydroxide (Ni(OH)2) nanosponge-balls on the surface of a nickel-foam (NiF) electrode. The modified NiF electrode, named Ni(OH)2@NiF, shows distinctive nanosponge-ball morphology and demonstrates excellent energy storage capability and electrocatalytic performance in both hydrogen and oxygen evolution reactions.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Versatile mixed ionic-electronic conducting binders for high-power, high-energy batteries

Rafael Del Olmo, Gregorio Guzman-Gonzalez, Oihane Sanz, Maria Forsyth, Nerea Casado

Summary: The use of Lithium-Ion Batteries (LIBs) is becoming increasingly extensive, and it is important to optimize the devices to achieve their maximum practical specific capacity. In this study, mixed ionic-electronic conducting (MIEC) binders based on PEDOT:PSS and PEDOT: PDADMA-TFSI were developed for Li-ion cathodes, and their performance was compared with conventional formulations. The influence of electrode formulations, including the addition of conducting carbon and an Organic Ionic Plastic Cristal (OIPC), was also analyzed. The proposed binders showed improved performance compared to conventional formulations with different electrolyte types and active materials.

ELECTROCHIMICA ACTA (2024)