4.6 Article

Microstructure and electrochemical properties of electron-beam deposited Sn-Cu thin film anodes for thin film lithium ion batteries

期刊

ELECTROCHIMICA ACTA
卷 53, 期 8, 页码 3377-3385

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2007.11.064

关键词

Sn-Cu thin film anode; electron-beam evaporation deposition; electrochemical cycleability; thin film lithium ion batteries

向作者/读者索取更多资源

Thin film Sn-Cu anodes with high Cu content were prepared by electron-beam evaporation deposition using Cu substrate as current collector. Annealing, with the condition being determined by DSC, was used to improve the performance of these electrodes. X-ray diffraction (XRD), scanning probe microscopy (SPM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the structure and composition of the Sn-Cu thin film electrodes. Cyclic voltammetry and galvanostatical charge-discharge measurement were carried out to characterize the electrochemical properties of the as-deposited and annealed electrodes. epsilon-Cu3Sn intermetallic phase was formed and interface strength between deposited active materials layer and current collector was enhanced by annealing the as-deposited film under suitable condition. The annealed thin film electrode showed good cycleability and had no phase change during cycling. Although large initial capacity loss was found associated with SE1 fort-nation due to increase of surface roughness of annealed electrode, a stable discharge capacity near 300 mAh/g with Coulomb efficiency of about 96% was obtained at voltage window of 0.1-2.0 V and a discharge capacity of about 200 mAh/g and Coulomb efficiency of 97% were kept stable up to 30th cycle at a narrower voltage window of 0.2-1.5 V versus Li/Li+. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据