4.6 Article

Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition

期刊

ELECTROCHIMICA ACTA
卷 53, 期 13, 页码 4370-4380

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2008.01.058

关键词

perovskite; cathode; ac impedance; oxygen reduction reaction; solid-oxide fuel cells (SOFCs)

向作者/读者索取更多资源

Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) cathodes for intermediate-temperature solid-oxide fuel cells (IT-SOFCs) were prepared by an electroless deposition process using N2H4 as the reducing agent at room temperature. This fabrication technique together with tailored electrode porosity, modified the BSCF electrodes with silver content that varied from 0.3 to 30 wt.% without damaging the electrode microstructure. Both the Ag loading and firing temperatures were found to have a significant impact on the electrode performance, which could facilitate or block the electrochemical processes of the BSCF-based cathodes, processes that include charge-transfer, oxygen adsorption and oxygen electrochemical reduction. At an optimal Ag loading of 3.0 wt.% and firing temperature of 850 degrees C, an area specific resistance of only 0.042 Omega cm(2) at 600 degrees C was achieved for a modified BSCF cathode. (c) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Grafting of Lithiophilic and Electron-Blocking Interlayer for Garnet-Based Solid-State Li Metal Batteries via One-Step Anhydrous Poly-Phosphoric Acid Post-Treatment

Chang Guo, Yu Shen, Peng Mao, Kaiming Liao, Mingjie Du, Ran Ran, Wei Zhou, Zongping Shao

Summary: This study reports a new surface chemistry that converts the undesired Li2CO3 contaminant into an ultra-thin lithium polyphosphate (Li-PPA) layer to address issues in garnet-based solid-state Li-metal batteries (GSSBs). The Li-PPA layer facilitates the spreading of molten Li and acts as an electron-blocking shield to suppress Li dendrite formation. The GSSBs with LiFePO4 demonstrate high capacity and good cyclability, suggesting the feasibility of this interfacial engineering strategy.

ADVANCED FUNCTIONAL MATERIALS (2023)

Review Engineering, Environmental

Morphology control and electronic tailoring of CoxAy (A = P, S, Se) electrocatalysts for water splitting

Jie Yu, Zheng Li, Tong Liu, Siyuan Zhao, Daqin Guan, Daifen Chen, Zongping Shao, Meng Ni

Summary: This article summarizes recent efforts and progress in regulating the electronic and morphological structures of CoxAy (A = P, S, Se)-based materials for the optimization of their catalytic performance. Methods such as phase control, defect engineering, nanostructure construction, heteroatom doping, and composite engineering are introduced to optimize the electronic configurations, increase active sites, and enhance the conductivity, etc. Furthermore, the underlying activity-structure relationships behind the boosted catalytic behavior of these materials are discussed in detail. Lastly, a perspective on the future exploration of CoxAy (A = P, S, Se)-based electrocatalysts is presented. This review provides valuable insights into the investigation of emerging materials in energy chemistry.

CHEMICAL ENGINEERING JOURNAL (2023)

Review Chemistry, Multidisciplinary

Electrolyte Engineering for Safer Lithium-Ion Batteries: A Review

Chencheng Cao, Yijun Zhong, Zongping Shao

Summary: Despite being widely used, the safety issue of lithium-ion batteries (LIBs) is a major barrier for their application in EVs or large-scale energy storage. This study summarizes the mechanisms of thermal runaway and recent progress in electrolyte engineering for LIBs, including adding flame-retardants, using ionic liquid electrolytes, and solid electrolytes. It also discusses the strengths, weaknesses, and new directions for designing safer electrolytes.

CHINESE JOURNAL OF CHEMISTRY (2023)

Article Chemistry, Physical

Cathode water management towards improved performance of protonic ceramic fuel cells

Chuan Zhou, Dongliang Liu, Meijuan Fei, Xixi Wang, Ran Ran, Meigui Xu, Wei Wang, Wei Zhou, Ryan O'Hayre, Zongping Shao

Summary: In this study, the balance between hydration reaction and oxygen reduction reaction (ORR) over protonic ceramic fuel cells (PCFCs) cathode is optimized by controlling the air flow rate. Different cathode materials show different optimal performance under various operating conditions. The study provides important insights into the environmental demands of PCFC cathodes during operation and offers useful guidance for further performance optimization.

JOURNAL OF POWER SOURCES (2023)

Article Engineering, Environmental

CO2-induced reconstruction for ORR-enhanced solid oxide fuel cell cathode

Yuan Zhang, Junbiao Li, Heping Xie, Zhipeng Liu, Suling Shen, Ying Teng, Daqin Guan, Shuo Zhai, Yufei Song, Wei Zhou, Bin Chen, Meng Ni, Zongping Shao

Summary: By utilizing a CO2-induced reconstruction strategy, a BaCO3 shell with both oxygen incorporative and robust properties was successfully built on a self-assembled composite cathode made of BaFeO3-delta perovskite. The resulting cathode exhibited enhanced ORR activity, durability, and thermomechanical compatibility.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Multidisciplinary

Enhanced proton conductivity and CO2-tolerance of intermediate-temperature protonic ceramic fuel cell with lanthanum tungstate-based composite cathode

Xiaoyu Wang, Meijuan Fei, Chuan Zhou, Wenhuai Li, Xixi Wang, Xuanxuan Shen, Dongliang Liu, Wanqing Chen, Peng Chen, Guancong Jiang, Ran Ran, Wei Zhou

Summary: Despite the low proton conductivity of most cathode materials in proton ceramic fuel cells (PCFCs), a composite cathode material consisting of La5.5W0.45-Mo0.4Nb0.15O11.25-delta (LWMN) and Sr2Sc0.1Nb0.1Co1.5Fe0.3O6-delta (SSNCF) was developed to enhance proton diffusion and weaken CO2 adsorption. The symmetrical cell based on the 3 wt% LWMN-SSNCF cathode achieved a lower linear degradation rate of ASRs compared to the single-phase SSNCF cathode. Furthermore, the PCFC with the composite cathode exhibited improved performance due to its superior proton conduction.

COMPOSITES PART B-ENGINEERING (2023)

Review Energy & Fuels

Additive Engineering for Mixed Lead-Tin Narrow-Band-Gap Perovskite Solar Cells: Recent Advances and Perspectives

Hai Wang, Jingsheng He, Huimin Xiang, Ran Ran, Wei Zhou, Wei Wang, Zongping Shao

Summary: Mixed Pb-Sn narrow-band-gap perovskite solar cells have attracted attention due to their low cost, high power conversion efficiency, and potential as a replacement for commercial silicon-based solar cells. However, these cells suffer from low efficiency, poor stability, and high Voc loss. Additive engineering strategies, such as stabilizing Sn2+ cations and controlling film properties, have been proposed to improve the efficiency and stability of these cells.

ENERGY & FUELS (2023)

Article Chemistry, Physical

Patchy Fe-N-C supported low-loading Pt nanoparticles as a highly active cathode for proton exchange membrane fuel cells

Bin Hu, Yongqing Yang, Wei Cao, Xixi Wang, Chuan Zhou, Yiyang Mao, Lei Ge, Ran Ran, Wei Zhou

Summary: This study presents a new, mass-producible catalyst for the oxygen reduction reaction (ORR), composed of low-loading (10 wt%) Pt nanoparticles bound to patchy nitrogen-doped carbon (PNC) with uniformly dispersed FeN4 sites (Pt/FeN4-PNC). The derived catalyst exhibits significantly improved catalytic activity and stability, with a promising mass activity (MA) of 0.94 A mgpt-1 and negligible decay after 30,000 cycles. In fuel-cell assessment, Pt/FeN4-PNC and Pt/FeN4-PNC-10 g achieved peak power densities of 1.13 W cm-2 and 1.14 W cm-2, respectively, and retained 88.5% and 88.1% of the initial values after 30,000 voltage cycles.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Review Chemistry, Physical

Fundamental Understanding and Applications of Protonic Y- and Yb-Coped Ba(Ce,Zr)O3 Perovskites: State-of-the-Art and Perspectives

Nikolai A. Danilov, Inna A. Starostina, George N. Starostin, Anna V. Kasyanova, Dmitry A. Medvedev, Zongping Shao

Summary: Proton-conducting oxide materials have protonic defects in their crystal structure due to their interaction with hydrogen-containing atmospheres, resulting in superior ionic conductivity. Barium cerate, barium zirconate, and barium cerate-zirconate are widely studied as proton-conducting electrolyte materials. Y and Yb co-doped Ba(Ce,Zr)O-3 is considered one of the most promising systems.

ADVANCED ENERGY MATERIALS (2023)

Article Chemistry, Multidisciplinary

Engineering the oxygen-evolution activity by changing the A-site rare-earth elements in RSr3Fe1.5Co1.5O10-& delta; (R = La, Nd, Pr) Ruddlesden-Popper perovskites

Wenyun Zhu, Jiani Chen, Dongliang Liu, Guangming Yang, Wei Zhou, Ran Ran, Jie Yu, Zongping Shao

Summary: The catalytic performance of a series of Ruddlesden-Popper-structured perovskite oxides for the oxygen evolution reaction (OER) was investigated. It was found that PrSr3Fe1.5Co1.5O10-δ exhibited the best OER performance with the smallest overpotential and lowest Tafel slope. Adjusting the A-site elements can improve the activity of the OER.

MATERIALS CHEMISTRY FRONTIERS (2023)

Article Chemistry, Multidisciplinary

Tailoring the surface cation configuration of Ruddlesden-Popper perovskites for controllable water oxidation performance

Yu Li, Gao Chen, Hsiao-Chien Chen, Yanping Zhu, Liangshuang Fei, Longwei Xu, Tiancheng Liu, Jie Dai, Haitao Huang, Wei Zhou, Zongping Shao

Summary: Although the bulk properties of catalytic materials can be easily regulated by doping, their surface where electrocatalysis occurs is often hard to be controlled. In this work, a surface tailoring strategy is proposed to finely manipulate the surface cation configuration of a Ruddlesden-Popper perovskite La2NiO4. By removing surface-enriched inactive La element and forming active Ni-Fe pairs, the surface tailored catalyst exhibits exceptional water oxidation performance. The study demonstrates that a dynamically reconstructed thin-layer surface with an equal amount of Ni and Fe elements, combined with a steady La-terminated subsurface, is the key to achieving high OER activity and durability.

ENERGY & ENVIRONMENTAL SCIENCE (2023)

Review Chemistry, Multidisciplinary

A review of progress in proton ceramic electrochemical cells: material and structural design, coupled with value-added chemical production

Yakun Wang, Yeqing Ling, Bin Wang, Guowei Zhai, Guangming Yang, Zongping Shao, Rui Xiao, Tao Li

Summary: This paper provides a general review of the mechanisms, operating principles, and performance improvement strategies of proton ceramic electrochemical cells (PCECs). It also presents various applications of PCECs, such as H2O electrolysis, CO2 electrolysis, and synthesis of high-value chemicals. The future commercialization of PCECs and the existing challenges are discussed.

ENERGY & ENVIRONMENTAL SCIENCE (2023)

Article Chemistry, Physical

A fundamental understanding of structure evolution in the synthesis of hard carbon from coal tar pitch for high-performance sodium storage

Lichang Ji, Yun Zhao, Lijuan Cao, Yong Li, Canliang Ma, Xingguo Qi, Zongping Shao

Summary: This study provides an in-depth analysis of the synthesis processes of coal tar pitches for fabricating hard carbon anodes in sodium-ion batteries. The different characteristics of the coal tar pitches have significant effects on the resulting carbon materials and their sodium storage behaviors.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Multidisciplinary

Enhancement of the electrochemical oxygen reduction performance by surface oxygen vacancies on hematite nanosheets

Gongxu Lan, Huilin Fan, Yuan Wang, Hamidreza Arandiyan, Suresh K. Bhargava, Zongping Shao, Hongyu Sun, Yanguo Liu

Summary: The surface atomic arrangement and defective structures of electrocatalysts play a crucial role in determining their catalytic activity and selectivity. In this study, alpha-Fe2O3 nanosheets with surface oxygen vacancies were synthesized and their oxygen vacancy concentration was varied to study their oxygen reduction reaction (ORR) performance. The results showed that increasing the oxygen vacancy concentration improved the ORR activity up to a certain point, but further increase deteriorated the crystalline quality and affected the performance.

NEW JOURNAL OF CHEMISTRY (2023)

Article Electrochemistry

Recent advances in Bio-mass by electrochemically strategies generated hydrogen gas production: Environmentally sustainable technologies innovation

Abdul Qayoom Mugheri, Shaista Khan, Ali Asghar Sangah, Aijaz Ahmed Bhutto, Muhammad Younis Laghari, Nadeem Ahmed Mugheri, Asif Ali Jamali, Arsalan Ahmed Mugheri, Nagji Sodho, Abdul Waheed Mastoi, Aftab Kandhro

Summary: Green hydrogen has the potential to transition to a pollution-free energy infrastructure. This study proposes a solution to produce hydrogen during the photoelectrochemical process, offering greater stability and control over chemical reactions. Techno-economic assessments show the efficiency and economic feasibility of co-producing value-added chemicals to enhance green hydrogen production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction

Danpeng Cheng, Wuxin Sha, Qigao Han, Shun Tang, Jun Zhong, Jinqiao Du, Jie Tian, Yuan-Cheng Cao

Summary: LiNixCoyMn1-x-yO2 (NCM) is a critical cathode material for lithium-ion batteries in electric vehicles. The aging of cathode/electrolyte interfaces leads to capacity degradation and long-term cycle instability. A novel neural network model called ACGNet is developed to predict electrochemical stability windows of crystals, allowing for high-throughput screening of coating materials. LiPO3 is identified as a promising coating material with high oxidation voltage and low cost, which significantly improves the cycle stability of NCM batteries. This study demonstrates the accuracy and potential of machine learning in battery materials.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Enhanced electrochemical performance of CuO/NiO/rGO for oxygen evolution reaction

P. Mohana, R. Yuvakkumar, G. Ravi, S. Arunmetha

Summary: This study successfully fabricates a non-noble CuO/NiO/rGO nanocomposite and investigates its electrocatalytic performance for oxygen evolution reaction in alkaline environment. The experimental results demonstrate that the electrocatalyst exhibits high activity and good stability, offering a new synthetic approach for sustainable energy production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Carbon nanofibers implanted porous catalytic metal oxide design as efficient bifunctional electrode host material for lithium-sulfur battery

Qiong Qu, Jing Guo, Hongyu Wang, Kai Zhang, Jingde Li

Summary: In this study, a bifunctional electrode host design consisting of carbon nanofibers implanted ordered porous Co-decorated Al2O3 supported on carbon nanotube film (CNTF) was proposed to address the shuttling effect of lithium polysulfides (LiPSs) and dendrite formation of metal lithium anode in lithium-sulfur (Li-S) batteries. The electrode exhibited excellent conductivity, efficient confinement of LiPSs, and catalytic conversion performance, resulting in high initial capacity and good capacity retention during cycling. As an anode, the electrode showed excellent Li+ diffusion performance and uniform lithium growth behavior, achieving a dendrite-free lithium electrode. The flexible pack cell assembled from these electrodes delivered a specific capacity of 972 mAh g(-1) with good capacity retention.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Spray coating of carbon nanoparticles as an effective and scalable method to enhance the performance of stainless steel anode in microbial electrochemical systems

Hong Zhang, Jin-Peng Yu, Chen Chen, Cheng-Yong Shu, Guang-Yu Xu, Jie Ren, Kai Cui, Wen-Fang Cai, Yun-Hai Wang, Kun Guo

Summary: Spray coating of acetylene black nanoparticles onto stainless steel mesh can enhance its biofilm formation ability and current density, making it a promising electrode material for microbial electrochemical systems. The spray coating method is simple, cost-effective, and suitable for large-size stainless steel electrodes.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical properties of Li-rich ternary cathode material Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase

Binpeng Hou, Jingjin Chen, Li-Hong Zhang, Xiaowen Shi, Zizhong Zhu

Summary: The electrochemical performance of Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase Li1.20Mn0.44Ni0.32Co0.04O1.83 was studied through first-principles calculations. The results show that the oxygen-deficient phase has a higher theoretical capacity but lower voltage platform and higher chemical activity compared to the pristine phase.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Post-mortem analysis of the Li-ion battery with charge/discharge deterioration in high- and low-temperature environments

Yating Du, Sayoko Shironita, Daisuke Asakura, Eiji Hosono, Yoshitsugu Sone, Yugo Miseki, Eiichi Kobayashi, Minoru Umeda

Summary: This study investigates the effect of high- and low-temperature environments on the charge-discharge performance of a Li-ion battery. The deterioration mechanisms of the battery at different temperatures are analyzed through various characterization techniques. The results indicate that the battery performance deteriorates more significantly at a low-temperature environment of 5 degrees C compared to higher temperatures. The understanding of the deterioration mechanisms can contribute to the development of safer battery usage methods.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A Co3O4-x/Co nanocomposite with synergistically enhanced electrochemical activity for reduction of nitrite to ammonia

Si-Si Shi, Zhi-Xiang Yuan, Fei Zhang, Ping Chen

Summary: In this study, a new nano-electrocatalyst was prepared, which exhibited superior electrocatalytic activity for the reduction of NO2- to ammonia in a neutral electrolyte, potentially due to the synergistic enhancement between Co3O4-x and Co.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Facile fabrication of NaOH nanorods on pencil graphite electrode for simultaneous electrochemical detection of natural antioxidants by deep eutectic solvent

Berna Dalkiran, Havva Bekirog

Summary: This study reports the use of deep eutectic solvents (DES) based on ethylene glycol and urea as low-cost and green electrolytes for enhancing electrochemical detection of natural antioxidants. The study successfully developed a disposable and effective electrochemical sensing platform for simultaneous determination of ascorbic acid (AA) and gallic acid (GA) using NaOH nanorods on a pencil graphite electrode. The proposed electrode showed improved analytical performance, with higher peak currents and shifted oxidation potentials in DES compared to BR buffer medium.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A three-dimensional fibrous tungsten-oxide/carbon composite derived from natural cellulose substance as an anodic material for lithium-ion batteries

Sijun Ren, Jianguo Huang

Summary: In this study, a novel bio-inspired nanofibrous WO3/carbon composite was synthesized using a facile hydrothermal method. The three-dimensional network structure of the composite alleviated the volume expansion of WO3 nanorods and enhanced the charge-transport kinetics. The optimized composite exhibited superior lithium storage properties.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Stabilizing the dissolution kinetics by interstitial Zn cations in CoMoO4 for oxygen evolution reaction at high potential

Zhilong Zheng, Yu Chen, Hongxia Yin, Hengbo Xiao, Xiangji Zhou, Zhiwen Li, Ximin Li, Jin Chen, Songliu Yuan, Junjie Guo, Haibin Yu, Zhen Zhang, Lihua Qian

Summary: This study found that interstitial Zn cations in CoMoO4 can modulate the dissolution kinetics of Mo cations and improve the OER performance. The interstitial Zn cations can prevent the dissolution of Co cations at high potential, enhancing the durability of the catalyst.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Molecular insights on optimizing nanoporous carbon-based supercapacitors with various electrolytes

Xiaobo Lin, Shern R. Tee, Debra J. Searles, Peter T. Cummings

Summary: Molecular dynamics simulations using the constant potential method were used to investigate the charging dynamics and charge storage of supercapacitors. The simulations revealed that the water-in-salt electrolyte exhibited the highest charge storage and significantly higher capacitance on the negative electrode. The varying contributions of different electrode regions to supercapacitor performance were also demonstrated.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Interaction between bilirubin oxidase and Au nanoparticles distributed over dimpled titanium foil towards oxygen reduction reaction

Wiktoria Lipinska, Vita Saska, Katarzyna Siuzdak, Jakub Karczewski, Karol Zaleski, Emerson Coy, Anne de Poulpiquet, Ievgen Mazurenko, Elisabeth Lojou

Summary: The spatial distribution of enzymes on electrodes is important for bioelectrocatalysis. In this study, controlled spatial distribution of gold nanoparticles on Ti nanodimples was achieved. The efficiency of enzymatic O2 reduction was found to be influenced by the size of the gold nanoparticles and their colocalization with TiO2. The highest stability of enzymatic current was observed with the largest gold nanoparticles.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical supercapacitor and water splitting electrocatalysis applications of self-grown amorphous Ni(OH)2 nanosponge-balls

Tariq M. Al-Hejri, Zeenat A. Shaikh, Ahmed H. Al-Naggar, Siddheshwar D. Raut, Tabassum Siddiqui, Hamdan M. Danamah, Vijaykumar V. Jadhav, Abdullah M. Al-Enizi, Rajaram S. Mane

Summary: This study explores a promising self-growth approach for the synthesis of nickel hydroxide (Ni(OH)2) nanosponge-balls on the surface of a nickel-foam (NiF) electrode. The modified NiF electrode, named Ni(OH)2@NiF, shows distinctive nanosponge-ball morphology and demonstrates excellent energy storage capability and electrocatalytic performance in both hydrogen and oxygen evolution reactions.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Versatile mixed ionic-electronic conducting binders for high-power, high-energy batteries

Rafael Del Olmo, Gregorio Guzman-Gonzalez, Oihane Sanz, Maria Forsyth, Nerea Casado

Summary: The use of Lithium-Ion Batteries (LIBs) is becoming increasingly extensive, and it is important to optimize the devices to achieve their maximum practical specific capacity. In this study, mixed ionic-electronic conducting (MIEC) binders based on PEDOT:PSS and PEDOT: PDADMA-TFSI were developed for Li-ion cathodes, and their performance was compared with conventional formulations. The influence of electrode formulations, including the addition of conducting carbon and an Organic Ionic Plastic Cristal (OIPC), was also analyzed. The proposed binders showed improved performance compared to conventional formulations with different electrolyte types and active materials.

ELECTROCHIMICA ACTA (2024)