4.6 Article

Corrosion resistance of pulsed laser-treated Ti-6Al-4V implant in simulated biofluids

期刊

ELECTROCHIMICA ACTA
卷 53, 期 15, 页码 5022-5032

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2008.01.086

关键词

laser surface treatment; Ti-6Al-4V; corrosion; electrochemical impedance spectroscopy (EIS); simulated biofluids (SBFs)

向作者/读者索取更多资源

A commercial Ti-6Al-4V alloy was treated with a pulsed-wave Nd:YAG laser under various process conditions to obtain surface oxide layer for corrosion resistance. The corrosion behaviors of bare and laser-treated Ti-6Al-4V alloy exposed to three different simulated biofluids (SBFs), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using the electrochemical techniques like open circuit potential (OCP), Tafel analysis, and electrochemical impedance spectroscopy (EIS). The Tafel analysis showed that the laser-treated Ti-6Al-4V specimens were more corrosion resistant than the bare specimens in any of the above SBFs. The various electrical equivalent circuit models were applied to fit the EIS results to further understand corrosion mechanisms due to different surface layers formed on the alloy surface before and after the laser treatment. Optical and AFM imaging techniques were used to evaluate the topographic and morphologic features of the alloy exposed to such SBFs. The corrosion behavior of the laser-treated surfaces was explained by the melting and solid-state oxidation processes, the morphology of the surface oxide, and the underlying alloy microstructure. It is realized during the present investigation that better corrosion resistance and surface stability can be achieved by oxide growth in solid-state, under a pulsed laser condition. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据