4.4 Article

Connexin43 regulates joint location in zebrafish fins

期刊

DEVELOPMENTAL BIOLOGY
卷 327, 期 2, 页码 410-418

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2008.12.027

关键词

Joint morphogenesis; Fin growth; Zebrafish; Gap junctions; Cx43; short fin; another long fin

资金

  1. NICHD [HD047737]
  2. Zebrafish International Resource Center [P40 RR12546]

向作者/读者索取更多资源

Joints are essential for skeletal form and function, yet their development remains poorly understood. In zebrafish fins, joints form between the bony fin ray segments providing essentially unlimited opportunities to evaluate joint morphogenesis. Mutations in cx43 cause the short segment phenotype of short fin (Sof(b123)) mutants, suggesting that direct cell-cell communication may regulate joint location. interestingly, increased cx43 expression in the another long fin (alf(dty86)) mutant appears to cause joint failure typical of that mutant. Indeed, knockdown of cx43 in alf(dty86) mutant fins rescues joint formation. Together, these data reveal a correlation between the level of Cx43 expression in the fin ray mesenchyme and the location of joints. Cx43 was also observed laterally in cells associated with developing joints. Confocal microscopy revealed that the Cx43 protein initially surrounds the membranes of ZNS5-positive joint cells, but at later stages becomes polarized toward the underlying Cx43-positive mesenchymal cells. One possibility is that communication between the Cx43-positive mesenchyme and the overlying ZNS5-positive cells regulates joint location, and upregulation of Cx43 in joint-forming cells contributes to joint morphogenesis. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Review Developmental Biology

Exploring the roles of noncoding RNAs in craniofacial abnormalities: A systematic review

Cheng Shi, Pengfei Jiao, Zhiyi Chen, Lan Ma, Siyue Yao

Summary: This review discusses the molecular etiology of congenital craniofacial abnormalities, with a focus on the role and mechanism of noncoding RNAs in regulating craniofacial development. Aberrant expression of noncoding RNAs has been implicated in the pathogenesis of craniofacial abnormalities, providing potential therapeutic targets.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

From soap bubbles to multicellular organisms: Unraveling the role of cell adhesion and physical constraints in tile pattern formation and tissue morphogenesis

Hideru Togashi, Steven Ray Davis, Makoto Sato

Summary: Tile patterns, regulated by cell adhesion molecules, are regular arrangements of cells that play important functional roles in multicellular organisms. The physical constraints and cell adhesion regulate both cell shape and tissue morphogenesis.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

Experimental validation and characterization of putative targets of Escargot and STAT, two master regulators of the intestinal stem cells in Drosophila melanogaster

Armen Khanbabei, Lina Segura, Cynthia Petrossian, Aaron Lemus, Ithan Cano, Courtney Frazier, Armen Halajyan, Donnie Ca, Mariano Loza-Coll

Summary: This article investigates the genetic regulatory mechanisms of Drosophila intestinal stem cells. The study found that most target genes co-regulated by Esg and STAT show a consistent gene expression pattern. However, manipulating these validated targets in vivo rarely replicated the effects of manipulating Esg and STAT, suggesting the presence of complex genetic interactions among the downstream targets of these two master regulator genes.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

Islet architecture in adult mice is actively maintained by Robo2 expression in β cells

Bayley J. Waters, Zoe R. Birman, Matthew R. Wagner, Julia Lemanski, Barak Blum

Summary: Researchers found that conditional deletion of Robo2 in adult mice led to a significant loss of islet architecture without affecting beta cell identity or function, suggesting that Robo2 plays a role in actively maintaining adult islet architecture. Understanding the factors required for islet architecture maintenance is crucial for developing future diabetes therapies.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

Myosin XV is a negative regulator of signaling filopodia during long-range lateral inhibition

Rhiannon Clements, Tyler Smith, Luke Cowart, Jennifer Zhumi, Alan Sherrod, Aidan Cahill, Ginger L. Hunter

Summary: Cell protrusions play a crucial role in regulating cell activities during development. By studying the regulation mechanism in fruit fly sensory bristle patterning, it was found that Myosin XV is essential for the dynamics of signaling filopodia and promotes long-range Notch signaling.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

A robust knock-in approach using a minimal promoter and a minicircle

Margaret Keating, Ryan Hagle, Daniel Osorio-Mendez, Anjelica Rodriguez-Parks, Sarah I. Almutawa, Junsu Kang

Summary: Knock-in reporter (KI) animals are essential for studying gene expression in biomedical research. This study developed a new strategy using minicircle technology and a minimal promoter to enhance knock-in events and establish stable KI transgenic reporter lines. The study also highlighted the importance of selecting the proper KI line due to potential inappropriate influence of genome editing on reporter gene expression.

DEVELOPMENTAL BIOLOGY (2024)

Article Developmental Biology

Neurog1 and Olig2 integrate patterning and neurogenesis signals in development of zebrafish dopaminergic and glutamatergic dual transmitter neurons

Christian Altbuerger, Meta Rath, Daniel Armbruster, Wolfgang Driever

Summary: This study reveals that Neurog1 and Olig2 transcription factors have differential requirements for the development of dopaminergic neurons, and they integrate local patterning signals and Notch neurogenic selection signaling to specify the progenitor population and initiate neurogenesis and differentiation.

DEVELOPMENTAL BIOLOGY (2024)