4.7 Article

Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis

期刊

DESALINATION
卷 260, 期 1-3, 页码 137-146

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2010.04.052

关键词

Decolorization; Staphylococcus epidermidis; Triphenylmethane dyes

向作者/读者索取更多资源

Staphylococcus epidermidis isolated from textile wastewater were tested for their decolorization capacity. Biodegradation of Crystal violet, Phenol red, Malachite green, Methyl green and Fuchsin (750 ppm) were investigated within (12 h, 10 h, 14 h, 12 h and 10 h) under shaking condition in Mineral Salt Medium (MSM) solution at a pH of 7.5 and a temperature of 25 degrees C. Our results showed that Staphylococcus epidermidis had a high decolorization capacity. Using a 2.6 x 10(6) CFU/ml inoculum size. We noted also that decolorization of dyes solutions (750 ppm) was achieved after the addition of 0.10% (w/v) yeast extract and 7 mM of glucose in MSM. Chemical Oxygen Demand (COD) removal, FTIR and UV-Visible analysis confirmed biodegradation of dyes. The phytotoxicity and microbial toxicity studies of extracted metabolites suggested their least toxic nature. Our results suggest the potential use of Staphylococcus epidermidis in triphenylmethane dyes decolorization. Phytotoxicity studies revealed that biodegradation of dyes by a microbial culture, resulted in its detoxification. Thus treated effluent can be used for ferti-irrigation. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Immunology

Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment

Bochra Kouidhi, Yasir Mohammed A. Al Qurashi, Kamel Chaieb

MICROBIAL PATHOGENESIS (2015)

Article Immunology

Molecular identification of potential denitrifying bacteria and use of D-optimal mixture experimental design for the optimization of denitrification process

Fadia Ben Taheur, Kais Fdhila, Hamouda Elabed, Amel Bouguerra, Bochra Kouidhi, Amina Bakhrouf, Kamel Chaieb

MICROBIAL PATHOGENESIS (2016)

Article Immunology

Use of juglone as antibacterial and potential efflux pump inhibitors in Staphylococcus aureus isolated from the oral cavity

Tarek Zmantar, Hanene Miladi, Bochra Kouidhi, Yassine Chaabouni, Rihab Ben Slama, Amina Bakhrouf, Kacem Mandouani, Kamel Chaieb

MICROBIAL PATHOGENESIS (2016)

Article Immunology

Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens

Fadia Ben Taheur, Bochra Kouidhi, Kais Fdhila, Hamouda Elabed, Rihab Ben Slama, Kacem Mahdouani, Amina Bakhrouf, Kamel Chaieb

MICROBIAL PATHOGENESIS (2016)

Article Immunology

Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens

Hanene Miladi, Tarek Zmantar, Yassine Chaabouni, Kais Fedhila, Amina Bakhrouf, Kacem Mandouani, Kamel Chaieb

MICROBIAL PATHOGENESIS (2016)

Article Food Science & Technology

Biodegradation and decolorization of azo dyes by adherent Staphylococcus lentus strain

Kamel Chaieb, Mohamed Hagar, Nagi R. E. Radwan

APPLIED BIOLOGICAL CHEMISTRY (2016)

Article Food Science & Technology

Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains

Fadia Ben Taheur, Kais Fedhila, Kamel Chaieb, Bochra Kouidhi, Amina Bakhrouf, Luis Abrunhosa

INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY (2017)

Article Immunology

Culture conditions improvement of Crassostrea gigas using a potential probiotic Bacillus sp strain

Kais Fdhila, Najla Haddaji, Ibtissem Chakroun, Amel Dhiaf, Mohammed Ezz Edine Macherki, Bochra Khouildi, Faouzi Lamari, Kamel Chaieb, Nabil Abid, Hajer Marzougui, Sadok Khouadja, Hechmi Missaoui

MICROBIAL PATHOGENESIS (2017)

Article Immunology

Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria

Hanene Miladi, Tarek Zmantar, Bochra Kouidhi, Yasir Mohammed A. Al Qurashi, Amina Bakhrouf, Yassine Chaabouni, Kacem Mandouani, Kamel Chaieb

MICROBIAL PATHOGENESIS (2017)

Article Immunology

Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar Typhimurium strains to nalidixic acid

Hanene Miladi, Tarek Zmantar, Bochra Kouidhi, Yassine Chaabouni, Kacem Mandouani, Amina Bakhrouf, Kamel Chaieb

MICROBIAL PATHOGENESIS (2017)

Article Biochemistry & Molecular Biology

ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES OF BLACK AND GREEN KOMBUCHA TEAS

Houda Battikh, Kamel Chaieb, Amina Bakhrouf, Emna Ammar

JOURNAL OF FOOD BIOCHEMISTRY (2013)

Article Biotechnology & Applied Microbiology

Anti-listerial and Anti-biofilm Activities of Potential Probiotic Lactobacillus Strains Isolated from Tunisian Traditional Fermented Food

Rihab Ben Slama, Bochra Kouidhi, Tarek Zmantar, Kamel Chaieb, Amina Bakhrouf

JOURNAL OF FOOD SAFETY (2013)

Article Immunology

Molecular detection of bacteria associated to dental caries in 4-12-year-old Tunisian children

Bochra Kouidhi, Kais Fdhila, Rihab Ben Slama, Kacem Mandouani, Hajer Hentati, Fayrouz Najjari, Amina Bakhrouf, Kamel Chaieb

MICROBIAL PATHOGENESIS (2014)

Article Immunology

Synthesis and evaluation of antibacterial and antibiofilm activities of pyridin-2-yl hexanoate

Bochra Kouidhi, Mohamed Hagar, Nagi R. E. Radwan, Kamel Chaieb

MICROBIAL PATHOGENESIS (2018)

Article Infectious Diseases

Modulation of drug resistance and biofilm formation of Staphylococcus aureus isolated from the oral cavity of Tunisian children

Tarek Zmantar, Rihab Ben Slama, Kais Fdhila, Bochra Kouidhi, Amina Bakhrouf, Kamel Chaieb

BRAZILIAN JOURNAL OF INFECTIOUS DISEASES (2017)

Article Engineering, Chemical

Comparative analysis of integrating standalone renewable energy sources with brackish water reverse osmosis plants: Technical and economic perspectives

Arvin Sohrabi, Mousa Meratizaman, Shuli Liu

Summary: This paper simulates and discusses possible solutions to improve the economic and technical performances of a battery-less renewable energy-powered BWRO system under real climate conditions. The study finds that the photovoltaic-based system performs better in terms of specific energy consumption and unused energy ratio.

DESALINATION (2024)

Article Engineering, Chemical

An innovative process design of seawater desalination toward hydrogen liquefaction applied to a ship's engine: An economic analysis and intelligent data-driven learning study/optimization

Chunlan Pan, Xiaoyin Hu, Vishal Goyal, Theyab R. Alsenani, Salem Alkhalaf, Tamim Alkhalifah, Fahad Alturise, Hamad Almujibah, H. Elhosiny Ali

Summary: This paper introduces a novel waste heat recovery method using the hot flue gas from a ship's engine to produce liquefied hydrogen while meeting the ship's air-conditioning requirement. A comprehensive feasibility assessment is conducted and an artificial neural network with a multiobjective grey wolf optimization method is used for optimization. The findings indicate the highest mean sensitivity index of the flash temperature and the best optimization scenario for exergy efficiency, CO2 emission reduction, and liquefied hydrogen cost.

DESALINATION (2024)

Article Engineering, Chemical

Selective separation of nitrate from chloride using PVDF-based anion-exchange membranes

Daniele Chinello, Jan Post, Louis C. P. M. de Smet

Summary: In this study, PVDF-based anion-exchange membranes were designed to selectively separate nitrate from chloride. Experimental data showed that increasing the concentration of PVDF enhanced nitrate transport but also increased the membrane electrical resistance. The selectivity of nitrate was found to be independent of the membrane thickness and mainly driven by the increased affinity between the anion and the membrane.

DESALINATION (2024)

Article Engineering, Chemical

Functionalized carbon 1D/2D nanomaterials for effective water desalination: Synthesis, applications and cost issues. An overview

Umar Noor, Muhammad Fayyaz Farid, Ammara Sharif, Amna Saleem, Zubair Nabi, Muhammad Furqan Mughal, Kiran Abbas, Toheed Ahmed

Summary: Global water scarcity is increasing, and water desalination is an important solution. Multifunctional advanced materials, such as membrane materials and solar-driven desalination, play a crucial role in water desalination. Additionally, these materials can be used for water purification, wastewater treatment, and pollutant elimination.

DESALINATION (2024)

Article Engineering, Chemical

sCO2 power cycle/reverse osmosis distillation system for water-electricity cogeneration in nuclear powered ships and submarines

Emrah Gumus

Summary: With growing global concerns about climate change and environmental impacts, the use of nuclear energy in naval vessels offers a cleaner and more efficient solution to reduce emissions and address water and energy supply challenges. This study explores a novel system that combines a nuclear-driven supercritical carbon dioxide power cycle with reverse osmosis cogeneration to meet the water and electricity demands in maritime operations, enhancing the sustainability, efficiency, and self-sufficiency of naval vessels. The results indicate that the system has the potential to be a viable and effective solution for naval operations.

DESALINATION (2024)

Article Engineering, Chemical

Zwitterionic material for construction of an antifouling polyamide thin film composite membrane

Dao Thi Thanh Huyen, Saikat Sinha Ray, Young -Nam Kwon

Summary: This study focuses on the modification of a commercially available polyamide thin-film composite membrane with a zwitterionic material to enhance its fouling resistance. The modified membrane shows improved salt rejection and reduced permeability compared to the pristine membrane. Fouling tests demonstrate that the modified membrane has a lower fouling ratio and higher recovery ratio. The enhanced antifouling characteristics are attributed to the improved hydrophilicity resulting from the zwitterionic brushes and the salting-in effect.

DESALINATION (2024)

Article Engineering, Chemical

Towards pilot scale flow-electrode capacitive deionization

Niklas Koeller, Lukas Mankertz, Selina Finger, Christian J. Linnartz, Matthias Wessling

Summary: This study presents a methodology to scale up Flow-electrode Capacitive Deionization (FCDI) technology from lab-scale to pilot-scale systems. By increasing membrane area and using a stacking approach, the FCDI modules were successfully scaled up and achieved a salt transfer rate comparable to lab-scale systems. This provides a foundation for future assessments of energy demand and economics.

DESALINATION (2024)

Article Engineering, Chemical

Efficient lithium recovery from simulated brine using a hybrid system: Direct contact membrane distillation (DCMD) and electrically switched ion exchange (ESIX)

Mona Gulied, Sifani Zavahir, Tasneem Elmakki, Hyunwoong Park, Guillermo Hijos Gago, Ho Kyong Shon, Dong Suk Han

Summary: This study introduces a novel hybrid system that combines direct contact membrane distillation (DCMD) and electrically switched ion exchange (ESIX) to facilitate seawater reverse osmosis (SWRO) brine enrichment and selective lithium recovery.

DESALINATION (2024)

Article Engineering, Chemical

Enhanced ammonia recovery from strong ammonia wastewater via a transmembrane electro-chemisorption system with authigenic acid and base

Zhiqiang Zhang, Ruifeng Deng, Jiao Zhang, Lu She, Guangfeng Wei, Renyong Jia, Pengyu Xiang, Siqing Xia

Summary: A transmembrane electro-chemisorption system with authigenic acid and base was developed for enhancing ammonia recovery from strong ammonia wastewater. The system efficiently transformed ammonium into free ammonia, which was then adsorbed and recovered through transmembrane chemisorption. This system yielded pure (NH4)2SO4 product and produced valuable byproducts of pure hydrogen and oxygen. Higher applied voltage resulted in better ammonia recovery.

DESALINATION (2024)

Article Engineering, Chemical

Development of high-integrity reverse osmosis membranes for enhanced removal of microorganisms

Alena Popova, Sandrine Boivin, Takuji Shintani, Takahiro Fujioka

Summary: This study aimed to produce a high-integrity RO membrane by forming a polyamide skin layer on a TE support layer, in order to enhance the integrity of the membrane and improve the microbiological safety of potable water reuse.

DESALINATION (2024)

Article Engineering, Chemical

Reducing the specific energy use of seawater desalination with thermally enhanced reverse osmosis

Sanjana Yagnambhatt, Saber Khanmohammadi, Jonathan Maisonneuve

Summary: This study investigates the concept of using heat to enhance reverse osmosis (RO) desalination. The effect of temperature on water permeate flux, specific energy, permeate quality, and applied operating pressures is evaluated using an analytical model. The results suggest that under specific conditions, the tradeoff between savings in mechanical pump work and thermal energy input in thermally-enhanced RO can be favorable, leading to overall energy savings.

DESALINATION (2024)

Article Engineering, Chemical

Selective membrane capacitive deionization for superior lithium recovery

Jiangju Si, Chenrui Xue, Shun Li, Linchao Yang, Weiwei Li, Jie Yang, Jihong Lan, Ningbo Sun

Summary: To meet the huge demand for lithium resources, there is an urgent need to develop a new efficient technology for lithium recovery from salt-lake brines. In this study, a selective membrane capacitive deionization system is reported, which achieves high lithium recovery capacity and rate through the use of materials with efficient intercalated pseudo-capacitance and a high specific area porous carbon. The use of a modified thin-coated membrane allows for selective Li+ recovery, and adjusting the concentrations of Li+ and Mg2+ in the feed solution enables higher Li+/Mg2+ selectivity.

DESALINATION (2024)

Article Engineering, Chemical

Augmentation of solar still distillation performance using waste heat energy and guiding vanes: A field study

Mohamed R. Salem, R. Y. Sakr, Ghazy M. R. Assassa, Omar A. Aly

Summary: This research proposes a new method of using wasted thermal energies as an additional heating source for solar still distillation units (SSDUs) to increase productivity and reduce pollution and global warming. By testing two SSDUs, the study shows that heating airflow can raise temperatures, enhance freshwater production, and improve system thermal efficiency.

DESALINATION (2024)

Article Engineering, Chemical

Novel fabric-based 3D photothermal evaporator with advanced light-harvesting and thermal management design

Qimeng Sun, Miao Sun, Linyan Yang, Yuan Gao, Xinghai Zhou, Lihua Lyu, Chunyan Wei

Summary: This study presents an innovative design and fabrication of a fabric-based conical roll (FCR) evaporator, which enables low-temperature evaporation and achieves high evaporation efficiency with excellent thermal management ability. The evaporator has demonstrated advanced light-harvesting capability and can produce freshwater that meets drinking water standards, showing great potential for applications in desalination and sewage treatment.

DESALINATION (2024)

Article Engineering, Chemical

A dual-functional lignin containing pulp foam for solar evaporation and contaminant adsorption

Yidong Zhang, Wangfang Deng, Meiyan Wu, Chao Liu, Guang Yu, Qiu Cui, Pedram Fatehi, Chunlin Xu, Bin Li

Summary: In this study, a novel polydopamine-functionalized lignin-containing pulp foam evaporator with high-efficiency desalination and multi-contaminant adsorption capabilities was designed. The foam evaporator showed excellent light absorption, water absorption, thermal conductivity, and chelation abilities, allowing for solar evaporation and contaminant adsorption synergistically. It also exhibited potential applications in metal ion concentration and contaminated seawater treatments, and demonstrated superior biodegradability compared to poly-styrene foam. This foam material holds promise for developing multifunctional photo-thermal systems for solar-driven water purification.

DESALINATION (2024)