4.6 Article

On the band-structure lineup at Ga2O3, Gd2O3, and Ga2O3(Gd2O3) heterostructures and Ga2O3 Schottky contacts

向作者/读者索取更多资源

The interface-induced gap states (IFIGS) are the fundamental mechanism that determines the band-structure lineup at semiconductor interfaces, i.e., the band-edge offsets at semiconductor heterostructures and the barrier heights of metal-semiconductor or Schottky contacts. Both quantities are composed of a zero-charge transfer and an electrostatic-dipole term which are given by the IFIGS's branch-point energies and the electronegativities of the two solids in contact, respectively. A respective analysis of experimental valence-band offsets of Ga2O3 and Gd2O3 heterostructures results in the empirical p-type branch-point energies of 3.57 and 2.85 eV, respectively. From experimental barrier heights of n-Ga2O3 Schottky contacts an empirical n-type branch-point energy of 1.34 eV is obtained. The p- and n-type branch point energies of Ga2O3 add up to 4.91 eV, the width of the Ga2O3 band gap, as to be expected from the theoretical IFIGS-and-electronegativity concept. The experimental valence-band offsets of Ga2O3(Gd2O3) heterostructures indicate that at their interfaces the chemical composition of the oxide differs from its nominal value in the bulk.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据