4.6 Article

On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC)

期刊

CHEMICAL ENGINEERING RESEARCH & DESIGN
卷 88, 期 11A, 页码 1505-1514

出版社

ELSEVIER
DOI: 10.1016/j.cherd.2010.03.006

关键词

Chemical-looping combustion; Synthetic ilmenite; Natural ilmenite; Syngas

资金

  1. Statens Energymyndighet (STEM) [Dnr 2006-04665, 21670-2]

向作者/读者索取更多资源

Chemical-looping combustion (CLC) is a combustion technique where the CO2 produced is inherently separated from the rest of the flue gases with a considerably low energy penalty. For this reason, CLC has emerged as one of the more attractive options to capture CO2 from fossil fuel combustion. When applying CLC with solid fuels, the use of a low cost oxygen carrier is highly important, and one such low cost oxygen carrier is the mineral ilmenite. The current work investigates the reactivity of several ilmenites, some which are synthetically produced by freeze granulation and two natural minerals, one Norwegian ilmenite and one South African ilmenite. A laboratory fluidized bed reactor made of quartz was used to simulate a two reactor CLC system by alternating the reduction and oxidation phase. The fuel was syngas containing 50% CO and 50% H-2. A mixture of 6g of ilmenite with 9 g inert quartz of diameter 125-180 mu m was exposed to a flow of 900mL(n)/min syngas in the reduction phase. During the oxidation phase, a 900mL/(n)min flow of 10% O-2 diluted in N-2 was used. The experimental results showed that all ilmenites give higher conversion of H-2 than of CO. Generally, synthetic ilmenites have better CO and H2 conversion than natural ilmenites and synthetic ilmenites prepared with an excess of Fe generally showed higher total conversion of CO than synthetic ilmenites with an excess of Ti. Most synthetic ilmenites and the Norwegian ilmenite showed good fluidization properties during the experiments. However, for two of the synthetically produced materials, and for the South African ilmenite, particle agglomerations were visible at the end of the experiment. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Energy & Fuels

Chemical Looping Combustion in a Packed Fluidized Bed Reactor-Fundamental Modeling and Batch Experiments with Random Metal Packings

Nasrin Nemati, Yukari Tsuji, Tobias Mattisson, Magnus Ryden

Summary: This study investigated the conversion of gaseous fuels during chemical looping combustion (CLC) in a packed fluidized reactor. The use of packings was found to improve the fuel conversion by enhancing gas-solid mass transfer, mainly due to the reduced bubble size. The results were consistent for different fuels, packings, and bed heights.

ENERGY & FUELS (2022)

Article Energy & Fuels

Oxygen Carrier and Alkali Interaction in Chemical Looping Combustion: Case Study Using a Braunite Mn Ore and Charcoal Impregnated with K2CO3 or Na2CO3

Daofeng Mei, Anders Lyngfelt, Henrik Leion, Carl Linderholm, Tobias Mattisson

Summary: Alkali is a problematic component in biomass combustion and chemical looping combustion using biomass fuels. This study investigated the interaction between alkali and an oxygen carrier by adding alkali salts to impregnated charcoal particles. The experiments showed that using alkali-impregnated charcoal led to partial agglomeration and defluidization, with the use of K-charcoal resulting in faster agglomeration/defluidization compared to Na-charcoal. Partial agglomeration could be due to surface melting of the braunite particles, while the formation of a low-melting-point Na-Si-Ca system could be responsible for agglomeration in Na-charcoal experiments. The concentration of alkali in the braunite bed increased with the use of alkali charcoals, but the reactivity of the used braunite was hardly affected.

ENERGY & FUELS (2022)

Article Energy & Fuels

Fate of trace elements in Oxygen Carrier Aided Combustion (OCAC) of municipal solid waste

Ivana Stanicic, Rainer Backman, Yu Cao, Magnus Ryden, Jesper Aronsson, Tobias Mattisson

Summary: Oxygen Carrier Aided Combustion (OCAC) is a novel approach for burning waste in a fluidized bed. This study analyzed solid samples from an industrial OCAC application using municipal solid waste and ilmenite as the oxygen carrier. The presence of oxygen carriers was found to influence the ash chemistry and the distribution of elements throughout the particle cross-section. The results provide valuable insights into the solid-state chemistry and fate of important elements.
Article Energy & Fuels

Thermochemical conversion of biomass volatiles via chemical looping: Comparison of ilmenite and steel converter waste materials as oxygen carriers

Ali Hedayati, Amir H. Soleimanisalim, Tobias Mattisson, Anders Lyngfelt

Summary: The performance of two oxygen carriers in CLC and CLG conditions were tested, showing higher syngas yield and methane conversion, better mechanical properties and less dust formation.
Article Thermodynamics

An exploratory study of phosphorus release from biomass by carbothermic reduction reactions

Emil O. Lidman Olsson, Peter Glarborg, Henrik Leion, Kim Dam-Johansen, Hao Wu

Summary: This study investigated the release mechanism of phosphorus (P) to the gas phase during the carbothermic reduction of meta-, pyro-, and ortho-phosphates commonly found in biomass. It was found that alkaline earth phosphates were reduced in steps, while alkali metaphosphates were reduced in one step, producing an intermediate phosphite. These findings are important for understanding the release of P in biomass combustion, pyrolysis, and gasification processes.

PROCEEDINGS OF THE COMBUSTION INSTITUTE (2023)

Article Energy & Fuels

Tar characteristics generated from a 10 kWth chemical-looping biomass gasifier using steel converter slag as an oxygen carrier

Fredrik Hildor, Amir H. Soleimanisalim, Martin Seemann, Tobias Mattisson, Henrik Leion

Summary: This study investigates the effect of using steel converter slag as an oxygen-carrying bed material on tar species generated in a dual fluidized bed biomass gasifier. The findings suggest that steel converter slag possesses catalytic properties, resulting in a decreased ratio of heavy tar components compared to ilmenite and sand. Temperature and fuel load have a significant effect on tar generation compared to the circulation and steam ratio.
Article Energy & Fuels

Investigating the Interaction between Ilmenite and Zinc for Chemical Looping

Ivana Stanicic, Emil Ola Lidman Olsson, Hao Wu, Peter Glarborg, Inaki Adanez-Rubio, Henrik Leion, Tobias Mattisson

Summary: In this study, the interaction between zinc compounds and ilmenite particles was investigated by exposing three types of ilmenites to gas-phase Zn and ZnCl2. The results showed that the gaseous conditions, particle ash layer composition, and iron availability played an important role in the interaction between zinc compounds and ilmenite particles.

ENERGY & FUELS (2023)

Article Energy & Fuels

Development of new Mn-based oxygen carriers using MgO and SiO2 as supports for Chemical Looping with Oxygen Uncoupling (CLOU)

Inaki Adanez-Rubio, Tobias Mattisson, Marijke Jacobs, Juan Adanez

Summary: Chemical Looping with Oxygen Uncoupling (CLOU) is a technology that separates the oxygen for fuel combustion using an oxygen carrier in a fuel reactor. This study investigates the behavior of Mn/Mg/Si system as oxygen carriers for CLOU. The most reactive oxygen carriers without Si in the structure were found to be M24Mg76 and M48Mg51. These carriers showed good reactivity and mechanical stability in a batch fluidized bed reactor.
Article Energy & Fuels

Performance of iron sand as an oxygen carrier at high reduction degrees and its potential use for chemical looping gasification

Victor Purnomo, Ivana Stanicic, Daofeng Mei, Amir H. Soleimanisalim, Tobias Mattisson, Magnus Ryden, Henrik Leion

Summary: Iron sand, a by-product of the industry, has a reasonable iron content and low cost. It has been found that iron sand can be used as an oxygen carrier in chemical looping gasification (CLG), with an oxygen transfer capacity lower than ilmenite. Utilizing iron sand leads to higher conversion rates of pine forest residue char to CO and H2 compared to ilmenite. The study also presents novel findings on the crystalline phase transformation of iron sand at different oxidation levels.
Article Energy & Fuels

Release of phosphorus from thermal conversion of phosphorus-rich biomass chars-Evidence for carbothermic reduction of phosphates

Emil O. Lidman Olsson, Daniel Schmid, Oskar Karlstrom, Kasper Enemark-Rasmussen, Henrik Leion, Songgeng Li, Peter Glarborg, Kim Dam-Johansen, Hao Wu

Summary: Biomass can be converted into heat, power, and biofuels through thermal conversion processes, but the presence of phosphorus in certain types of biomass can lead to operational or environmental issues when released. The mechanisms behind phosphorus release and high-temperature phosphorus chemistry need to be understood in order to efficiently recover phosphorus from biomass residues. This study investigated the release of phosphorus from wheat bran char and sunflower seed char under various gas environments and temperatures.
Article Chemistry, Applied

Production of aviation fuel with negative emissions via chemical looping gasification of biogenic residues: Full chain process modelling and techno-economic analysis

Muhammad Nauman Saeed, Mohammad Shahrivar, Gajanan Dattarao Surywanshi, Tharun Roshan Kumar, Tobias Mattisson, Amir H. Soleimanisalim

Summary: The second-generation bio aviation fuel production via Chemical Looping Gasification (CLG) combined with downstream Fischer-Tropsch (FT) synthesis is a possible way to decarbonize aviation sector. This study models the full chain process of biomass to liquid fuel (BtL) with LD-slag and Ilmenite as oxygen carriers using Aspen Plus software, validates the results with experiments, and conducts a techno-economic analysis of the process.

FUEL PROCESSING TECHNOLOGY (2023)

Article Chemistry, Physical

Discovery of Oxygen Carriers by Mining a First-Principle Database

Joakim Brorsson, Viktor Rehnberg, Adam A. Arvidsson, Henrik Leion, Tobias Mattisson, Anders Hellman

Summary: Chemical looping is an innovative technique that requires new oxygen carriers. To speed up the process of finding these carriers, we used a computational screening approach based on energetic data from the Open Quantum Materials Database. From an initial list of 300,000 materials, we narrowed down to 1,000 by filtering out rare, radioactive, toxic, or harmful elements. The highest ranking phases contain elements such as Cu, Mn, and Fe.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Energy & Fuels

Metal impregnation on steel converter slag as an oxygen carrier

Fredrik Hildor, Tobias Mattisson, Carl Linderholm, Henrik Leion

Summary: This study investigates the effect of adding small amounts of more reactive elements into steel converter slag, which improves its reactivity towards CO and CH4, and increases the conversion rate of benzene.

GREENHOUSE GASES-SCIENCE AND TECHNOLOGY (2023)

Article Energy & Fuels

Study of the interaction between a Mn ore and alkali chlorides in chemical looping combustion

Daofeng Mei, Anders Lyngfelt, Henrik Leion, Tobias Mattisson

Summary: Chemical looping combustion (CLC) is a technology that can generate heat and power while capturing CO2. Using biomass in CLC (bio-CLC) allows for negative CO2 emissions. This study investigates the interaction between alkalis in biomass and the process, focusing on charcoal impregnated with alkali chlorides. The results show that impregnation with alkalis improves the gasification rate, with carbonates resulting in earlier and more permanent defluidization compared to chlorides. Partial agglomeration and retention of alkalis in the oxygen carrier are observed, with similar reactivity noticed with CH4 and H2.
Article Engineering, Chemical

Hold-up formation in bubble channel reactors: A bubble-scale investigation

Andrea Coletto, Pietro Poesio

Summary: Experiments and simulations were conducted to study the air volume fraction and hold-up in a bubble channel reactor. A new signal processing method was proposed to avoid the loss of bubble residence time. The results were in agreement with previous studies and a bubble-scale model was developed to explain the relationship between hold-up and air superficial velocity.

CHEMICAL ENGINEERING RESEARCH & DESIGN (2024)