4.8 Article

Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of catalysts

期刊

BIORESOURCE TECHNOLOGY
卷 101, 期 2, 页码 745-751

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2009.08.042

关键词

Subcritical; Oil palm fruit press fiber (FPF); Liquefaction; Bio-oil

资金

  1. Ministry of Science, Technology and Innovation [03-01-05-SF0208]
  2. Ministry of Higher Education [6071162]
  3. Universiti Sains Malaysia (Research University (RU) [814004]

向作者/读者索取更多资源

Decomposition of oil palm fruit press fiber (FPF) to various liquid products in subcritical water was invest tigated using a high-pressure autoclave reactor with and without the presence of catalyst. When the reaction was carried in the absence of catalyst, the conversion of solid to liquid products increased from 54.9% at 483 K to 75.8% at 603 K Simultaneously, the liquid yield increased from 28.8% to 39.1%. The liquid products were sub-categorized to bio-oil (benzene soluble, diethylether soluble, acetone soluble) and water Soluble. When 10% ZnCl2. was added, the conversion increased slightly but gaseous products increased significantly. However, when 10% Na2CO3 and 10% NaOH were added independently, the solid conversion increased to almost 90%. In the presence of catalyst, the liquid products were mainly bio-oil compounds. Although solid conversion increased at higher reaction temperature, but the liquid yield did not increase at higher temperature. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Energy & Fuels

Investigation of synergy and inhibition effects during co-gasification of tire char and biomass in CO2environment

Pooya Lahijani, Maedeh Mohammadi, Abdul Rahman Mohamed

Summary: This study investigates the co-gasification of tire char and rambutan peel. The results show that high proportion of tire char inhibits the gasification reaction, while higher content of biomass promotes the reaction. In addition, natural catalysts in the biomass also have a synergistic effect on the reaction.

BIOMASS CONVERSION AND BIOREFINERY (2022)

Article Environmental Sciences

An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane

Nor Fazila Khairudin, Maedeh Mohammadi, Abdul Rahman Mohamed

Summary: This study focused on developing alumina-supported cobalt (Co/Al2O3) catalysts for dry reforming of methane (DRM) with high catalytic activity and long-term stability, attributed to the small Co particle size with good dispersion on the alumina support and strong metal-support interaction.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2021)

Article Environmental Sciences

Alkali-modified biochar as a sustainable adsorbent for the low-temperature uptake of nitric oxide

S. Anthonysamy, P. Lahijani, M. Mohammadi, A. R. Mohamed

Summary: This study investigated the low-temperature oxidative uptake of NO on alkali-modified biochar, showing that the NO capture capacity was significantly improved after modification. The adsorption capacity of KOH-activated biochar reached 87.0 mg/g at 30 degrees C, mainly attributed to factors like oxygen functionalities and carbon defects.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY (2022)

Article Materials Science, Ceramics

Electrochemical exfoliation of graphene using dual graphite electrodes by switching voltage and green molten salt electrolyte

Maher T. Alshamkhani, Pooya Lahijani, Keat Teong Lee, Abdul Rahman Mohamed

Summary: In this study, the switching voltage technique was used to efficiently exfoliate graphite in eutectic molten salts. The exfoliated graphene samples exhibited high production yields, low ID/IG ratios, and good electrical conductivities. Compared to constant voltage exfoliation, the switching voltage technique produced smoother graphene flakes with less agglomeration, crumbling, and wrinkling. Characterization analysis confirmed the smaller crystallite size, lower thickness, and higher quality and purity of the exfoliated graphene prepared using the switching voltage technique.

CERAMICS INTERNATIONAL (2022)

Article Environmental Sciences

Development of microwave-assisted nitrogen-modified activated carbon for efficient biogas desulfurization: a practical approach

Norhusna Mohamad Nor, Lau Lee Chung, Abdul Rahman Mohamed

Summary: The utilization of microwave heating and nitrogen-modification can generate adsorbents with superior performance for efficient removal of hydrogen sulfide (H2S). The modified palm shell activated carbon synthesized using microwave heating exhibited excellent properties, including a large surface area and new pore structures. Microwave heating assisted in the development of the adsorbent's properties and contributed to high removal of H2S at low adsorption temperature.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2023)

Review Energy & Fuels

Modification of biomass-derived biochar: A practical approach towards development of sustainable CO2 adsorbent

Nuradibah Mohd Amer, Pooya Lahijani, Maedeh Mohammadi, Abdul Rahman Mohamed

Summary: This article reviews the recent studies on biochar as a material for carbon capture, including its preparation and modification methods, and the influence on its physical, chemical, and physicochemical properties. Biochar exhibits high CO2 adsorption performance and sustainable performance, which are crucial for large-scale CO2 capture.

BIOMASS CONVERSION AND BIOREFINERY (2022)

Review Chemistry, Physical

Toward Excellence in Photocathode Engineering for Photoelectrochemical CO2 Reduction: Design Rationales and Current Progress

Lutfi Kurnianditia Putri, Boon-Junn Ng, Wee-Jun Ong, Siang-Piao Chai, Abdul Rahman Mohamed

Summary: This article reviews the potential, design strategies, and material progress of photoelectrochemical CO2 reduction reaction (PEC CO2RR), as well as summarizes and discusses various photocathode semiconductor materials. Finally, perspectives on the design of photocathodes for CO2RR and new paradigms in the field are proposed.

ADVANCED ENERGY MATERIALS (2022)

Article Energy & Fuels

An investigation on sequential ultrasonication and metal modification of biochar on its CO2 capture performance

Anis Natasha Shafawi, Pooya Lahijani, Maedeh Mohammadi, Abdul Rahman Mohamed

Summary: Sequential ultrasonication and metal modification can enhance the CO2 capture capacity of biochar, but no synergistic effect was observed when they were applied together. Ultrasonication and metal modification can modulate the physicochemical properties of biochar, affecting its CO2 capture performance. The Avrami kinetic model can better predict the CO2 adsorption on biochar.

BIOMASS CONVERSION AND BIOREFINERY (2022)

Review Chemistry, Inorganic & Nuclear

Methods and strategies for producing porous photocatalysts: Review

Bashaer Mahmoud Namoos, Abdul Rahman Mohamed, Khozema Ahmed Ali

Summary: The desire to improve photocatalytic activity is increasing, especially in semiconductors. Porous photocatalysts have been synthesized to improve surface area and reduce recombination of electron-hole pairs. This paper reviews recent works on porous photocatalysts, with a focus on synthesis and fabrication methods. The topotactic transition technique is the best method for metal oxide porous photocatalysts, while self-organizing blocks are the best method for polymeric porous photocatalysts, especially for growing and fixing 1D semiconductor nanomaterials on 3D and 2D semiconductors on 2D. The hard template method allows for better control of particle shape and size, but the template removal is non-ecofriendly, making the soft template method more favorable. The etching method, on the other hand, is suitable for fabricating porous photocatalysts through a membrane by utilizing the electrical charge created by moving electrons in the electrolyte as a driving force.

JOURNAL OF SOLID STATE CHEMISTRY (2023)

Article Geochemistry & Geophysics

Multivariate spatial analysis of groundwater quality using copulas

Vahid Birjandi, Sayyed-Hassan Tabatabaei, Reza Mastouri, Hossein Mazaheri, Rasoul Mirabbasi

Summary: In this study, copula functions were used for multivariate analysis of groundwater quality variables in Shahrekord plain, Iran. The results showed a high correlation between SAR-Na and EC-TDS variables, and the Joe copula function was chosen as the best fitted copula function for multivariate analysis of two quality variables in a well. For inter-well analysis, the Clayton copula function was selected. Comparisons with geostatistical methods showed that the proposed IWA method has higher efficiency and acceptable accuracy.

ACTA GEOPHYSICA (2023)

Review Engineering, Environmental

Sulfur dioxide catalytic reduction for environmental sustainability and circular economy: A review

Michelle Mei Xue Lum, Kim Hoong Ng, Sin Yuan Lai, Abdul Rahman Mohamed, Abdulkareem Ghassan Alsultan, Yun Hin Taufiq-Yap, Mei Kee Koh, Mohamad Azuwa Mohamed, Dai-Viet N. Vo, Manjulla Subramaniam, Kyle Sebastian Mulya, Nathasya Imanuella

Summary: Air pollution from untreated sulfur dioxide-rich flue gas is a major environmental and human health issue. Many sulfur dioxide removal technologies have been developed, but conventional methods generate by-products. Catalytic reduction of sulfur dioxide offers a sustainable solution with high efficiency and the recovery of valuable solid sulfur. This review discusses recent advances and the potential of this technology.

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION (2023)

Review Chemistry, Multidisciplinary

Retrospective insights into recent MXene-based catalysts for CO2 electro/photoreduction: how far have we gone?

Xin-Quan Tan, Wuwei Mo, Xinlong Lin, Jian Yiing Loh, Abdul Rahman Mohamed, Wee-Jun Ong

Summary: The electro/photocatalytic CO2 reduction reaction (CO2RR) is an important approach for the synthesis of renewable fuels and value-added chemicals. MXenes, a type of 2D transition metal carbides, nitrides, and carbonitrides, show great potential in electrocatalysis and photocatalysis due to their unique properties. This review provides an overview of recent advances in MXene-based catalysts for the electrocatalytic and photocatalytic CO2RR, including their structure, synthesis pathways, and activity enhancement strategies. The review also discusses the current state of research in the field and proposes future perspectives.

NANOSCALE (2023)

Article Engineering, Environmental

A metal-free electrochemically exfoliated graphene/graphitic carbon nitride nanocomposite for CO2 photoreduction to methane under visible light irradiation

Maher T. Alshamkhani, Lutfi Kurnianditia Putri, Pooya Lahijani, Keat Teong Lee, Abdul Rahman Mohamed

Summary: In this study, an electrochemically exfoliated graphene/graphite carbon nitride ((EG)/g-C3N4) heterojunction photocatalyst was synthesized for CO2 photoreduction to methane. The best-performing photocatalyst (0.075 EG-CN) showed a significant enhancement in CH4 production with 98.6% selectivity after 6 hours of light irradiation compared to pure CN. The developed photocatalyst exhibited high stability after consecutive cycles of CO2 photoreduction to CH4.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Review Chemistry, Physical

Point-to-face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g-C3N4 towards photocatalytic energy applications

Xin-Quan Tan, Sue-Faye Ng, Abdul Rahman Mohamed, Wee-Jun Ong

Summary: This article introduces the recent advances in experimental and computational studies on the interfacial design of 0D nanostructures on 2D graphitic carbon nitride (g-C3N4). By engineering point-to-face contact between 2D g-C3N4 and 0D nanomaterials, heterojunction interfaces can be formed, which is beneficial for photocatalytic reactions. Different types of 0D nanostructures and synthesis strategies for photocatalytic applications are discussed.

CARBON ENERGY (2022)

Article Chemistry, Physical

Uncovering the multifaceted roles of nitrogen defects in graphitic carbon nitride for selective photocatalytic carbon dioxide reduction: a density functional theory study

Jie-Yinn Tang, Chen-Chen Er, Lling-Lling Tan, Yi-Hao Chew, Abdul Rahman Mohamed, Siang-Piao Chai

Summary: This study systematically unraveled the effect of defect engineering on the properties and catalytic performance of graphitic carbon nitride (g-C3N4). By introducing various defect sites, the study achieved improved charge separation efficiency and CO2 adsorption affinity in g-C3N, providing a more feasible pathway for CO2 reduction.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2022)

Article Agricultural Engineering

Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation

Yinping Xiang, Meiying Jia, Rui Xu, Jialu Xu, Lele He, Haihao Peng, Weimin Sun, Dongbo Wang, Weiping Xiong, Zhaohui Yang

Summary: This study investigated the impact of the non-antibiotic pharmaceutical carbamazepine on antibiotic resistance genes (ARGs) during anaerobic digestion. The results showed that carbamazepine induced the enrichment of ARGs and increased the abundance of bacteria carrying these genes. It also facilitated microbial aggregation and intercellular communication, leading to an increased frequency of ARGs transmission. Moreover, carbamazepine promoted the acquisition of ARGs by pathogens and elevated their overall abundance.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings

Weixin Zhao, Tianyi Hu, Hao Ma, Dan Li, Qingliang Zhao, Junqiu Jiang, Liangliang Wei

Summary: This review summarizes the effects and potential mechanisms of biochar on microbial behavior in AD systems. The addition of biochar has been found to promote microbial colonization, alleviate stress, provide nutrients, and enhance enzyme activity. Future research directions include targeted design of biochar, in-depth study of microbial mechanisms, and improved models.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives

Christina Karmann, Anna Magrova, Pavel Jenicek, Jan Bartacek, Vojtech Kouba

Summary: This review assesses nitrogen removal technologies in reject water treatment, highlighting the differences in environmental impacts and economic benefits. Partial nitritation-anammox shows potential for economic benefits and positive environmental outcomes when operated and controlled properly.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Layered double hydroxide loaded pinecone biochar as adsorbent for heavy metals and phosphate ion removal from water

Wei-Hao Huang, Ying-Ju Chang, Duu-Jong Lee

Summary: This study modified pinecone biochar with layered double hydroxide (LDH) to enhance its adsorption capacity for heavy metal and phosphate ions. The LDH-biochar showed significantly improved adsorption capacities for Pb2+ and phosphate, and a slight increase for Cu2+ and Co2+. The LDH layer enhanced the adsorption through various mechanisms.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Machine learning-based prediction of methane production from lignocellulosic wastes

Chao Song, Fanfan Cai, Shuang Yang, Ligong Wang, Guangqing Liu, Chang Chen

Summary: This paper developed a machine learning model to predict the biochemical methane potential during anaerobic digestion. Model analysis identified lignin content, organic loading, and nitrogen content as key attributes for methane production prediction. For feedstocks with high cellulose content, early methane production is lower but can be improved by prolonging digestion time. Moreover, lignin content exceeding a certain value significantly inhibits methane production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource

Sang Min Lee, Ju Young Lee, Ji-Sook Hahn, Seung-Ho Baek

Summary: This study successfully developed an efficient platform strain using Yarrowia lipolytica for the bioconversion of renewable resources into adipic acid, achieving a remarkable increase in production level.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae

Sefkan Kendir, Matthias Franzreb

Summary: This study presents a novel approach using magnetic separation to efficiently harvest freshwater microalgae, Chlorella vulgaris. By combining pH-induced calcium phosphate precipitation with cheap natural magnetite microparticles, harvesting efficiencies up to 98% were achieved in the model medium.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Solvothermal liquefaction of orange peels into biocrude: An experimental investigation of biocrude yield and energy compositional dependency on process variables

Ishaq Kariim, Ji-Yeon Park, Wajahat Waheed Kazmi, Hulda Swai, In-Gu Lee, Thomas Kivevele

Summary: The impact of reaction temperature, residence time, and ethanol: acetone on the energy compositions and yield enhancement of biocrudes was investigated. The results showed that under appropriate conditions, biocrudes with high energy and low oxygen content can be obtained, indicating a high potential for utilization.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Enhancing nitrogen removal performance through intermittent aeration in continuous plug-flow anaerobic/aerobic/anoxic process treating low-strength municipal sewage

Xiyue Zhang, Xiyao Li, Liang Zhang, Yongzhen Peng

Summary: Intermittent aeration is an innovative approach to enhance nitrogen removal in low carbon-to-nitrogen ratio municipal sewage, providing an efficient strategy for the continuous plug-flow AOA process.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Mechanism of magnetite-assisted aerobic composting on the nitrogen cycle in pig manure

Xu Yang, Mahmoud Mazarji, Mengtong Li, Aohua Li, Ronghua Li, Zengqiang Zhang, Junting Pan

Summary: This study investigated the impact of magnetite on the nitrogen cycle of pig manure biostabilisation. The addition of magnetite increased N2O emissions and decreased NH3 emissions during composting. It also increased the total nitrogen content but should be considered for its significant increase in N2O emissions in engineering practice.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Recent advances in microalgal production, harvesting, prediction, optimization, and control strategies

Ty Shitanaka, Haylee Fujioka, Muzammil Khan, Manpreet Kaur, Zhi-Yan Du, Samir Kumar Khanal

Summary: The market value of microalgae has exponentially increased in the past two decades, thanks to their applications in various industries. However, the supply of high-value microalgal bioproducts is limited due to several factors, and strategies are being explored to overcome these limitations and improve microalgae production, thus increasing the availability of algal-derived bioproducts in the market.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Efficient supply with carbon dioxide from flue gas during large scale production of microalgae: A novel approach for bioenergy facades

Martin Kerner, Thorsten Wolff, Torsten Brinkmann

Summary: The efficiency of using enriched CO2 from flue gas for large-scale production of green microalgae has been studied. The results show that the use of membrane devices and static mixers can effectively improve the CO2 recovery rate and maintain the suitable pH and temperature during cultivation, achieving a more economical and sustainable microalgae production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation

Rui Ma, Ji Li, Rd Tyagi, Xiaolei Zhang

Summary: This review summarizes the microorganisms capable of using CO2 and CH4 to produce PHAs, illustrating the production process, factors influencing it, and discussing optimization techniques. It identifies the challenges and future prospects for developing economically viable PHAs production using GHGs as a carbon source.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH3 and N2O emissions and increase of nitrate

Bing Wang, Peng Zhang, Xu Guo, Xu Bao, Junjie Tian, Guomin Li, Jian Zhang

Summary: The addition of zeolite in the co-composting of chicken manure and straw significantly reduced the emissions of ammonia and N2O, and increased the nitrate content. Zeolite also promoted the abundance of nitrification genes and inhibited the expression of denitrification genes.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Exploring advanced phycoremediation strategies for resource recovery from secondary wastewater using a large scale photobioreactor

Rohit Dey, Franziska Ortiz Tena, Song Wang, Josef Martin Messmann, Christian Steinweg, Claudia Thomsen, Clemens Posten, Stefan Leu, Matthias S. Ullrich, Laurenz Thomsen

Summary: This study investigated the operation of a 1000L microalgae-based membrane photobioreactor system for continuous secondary wastewater treatment. The research focused on a green microalgae strain called Desmodesmus sp. The study aimed to understand key trends and optimization strategies by conducting experiments in both summer and winter seasons. The findings showed that maintaining low cell concentrations during periods of light inhibition was beneficial for nutrient uptake rates. Effective strategies for enhancing algae-based wastewater treatment included cell mass recycling and adjusting dilution rates based on light availability.

BIORESOURCE TECHNOLOGY (2024)