4.8 Article

Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions

期刊

BIOMATERIALS
卷 35, 期 27, 页码 8002-8014

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2014.05.081

关键词

HA; rHDL; SR-BI; CD44; Atheroprotective efficacy; Atherosclerotic lesions targeting

资金

  1. National Natural Science Foundation of China [81273466]
  2. Specialized Research Fund for the Doctoral Program of Higher Education [20120096120005]

向作者/读者索取更多资源

The primary aim of our current study was to utilize hyaluronic acid (HA) to decorate reconstituted high density lipoprotein (rHDL) loaded with lovastatin (LT), termed as HA-LT-rHDL, in order to investigate whether coating HA could efficiently evade from the undesired uptake of LT-rHDL in liver mediated by scavenger receptor class B type I (SR-BI) and then greatly accumulate LT-rHDL in atherosclerotic lesions via strong HA affinity to CD44 up-regulated at inflammatory sites such as atherosclerotic lesions, thus exerting enhanced atheroprotective efficacy. In vitro characterizations indicated the successful HA decoration onto the surface of LT-rHDL, which could be indirectly verified by the increased particle size, enhanced negative surface charge and reduced in vitro drug release rate after HA decoration. Compared with rHDL without HA, HA decoration endowed rHDL with better atherosclerotic lesions targeting efficiency and lower liver accumulation, proved by results from ex vivo imaging and tissue distribution. Furthermore, atheroprotective efficacy in model animal showed that HA-LT-rHDL had the best potent efficacy than other LT preparations, which was demonstrated by the fewest atherosclerotic lesions sizes, the most minimum mean intima-media thickness (MIT), the lowest macrophage infiltration and expression of matrix metalloproteinase-9 (MMP-9), respectively. Above results demonstrated that the newly designed HA-LT-rHDL could decrease the non-targeted uptake by liver and deliver a large amount of drug into atherosclerotic lesions so as to efficiently suppress the advancement of atherosclerosis. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据