4.8 Article

Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root

期刊

BIOMATERIALS
卷 33, 期 5, 页码 1291-1302

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.09.068

关键词

Dental follicle cells; Tooth root; Regeneration; Scaffold; Tooth

资金

  1. Nature Science Foundation of China [30725042, 81020108019, 31030033]
  2. National Basic Research Program (973 Program) [2010CB944800]

向作者/读者索取更多资源

Tissue engineering strategies to reconstruct tooth roots are an effective therapy for the treatment of tooth loss. However, strategies to successfully regenerate tooth roots have not been developed and optimized. In the present study, rat dental follicle stem cells (DFCs) were characterized, followed by a thorough investigation of tooth roots regeneration for a combination of DFCs seeding cells, treated dentin matrix (TDM) scaffolds, and an inductive alveolar fossa microenvironrnent. Eighteen clones derived from single DFCs were harvested; however, only three clones were amplified successfully more than five passages and 90-95 days in culture. Following 270 days or 30 passages, the heterogeneous DFCs showed suitable characteristics for seeding cells to regenerate tooth roots. However, various features, such as variable proliferation rates, differentiation characteristics, apoptosis rates, and total lifespan were observed in DFCs and the three clones. Importantly, upon transplantation of DFCs combined with TDM for four weeks, root-like tissues stained positive for markers of dental pulp and periodontal tissues were regenerated in the alveolar fossa, but not in the skull and omental pockets. These results indicate that tooth roots were successfully regenerated and suggest that the combination of DFCs with TDM in the alveolar fossa is a feasible strategy for tooth roots regeneration. This strategy could be a promising approach for the treatment of clinical tooth loss and provides a perspective with potential applications to regeneration of other tissues and organs. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Engineering, Biomedical

A novel capsid-XL32-derived adeno-associated virus serotype prompts retinal tropism and ameliorates choroidal neovascularization

Lin-Lin Luo, Jie Xu, Bing-Qiao Wang, Chen Chen, Xi Chen, Qiu-Mei Hu, Yu-Qiu Wang, Wan-Yun Zhang, Wan-Xiang Jiang, Xin-Ting Li, Hu Zhou, Xiao Xiao, Kai Zhao, Sen Lin

Summary: A novel AAV serotype, AAVYC5, introduced in this study, showed more efficient transduction into multiple retinal layers compared to AAV2, and enabled successful delivery of anti-angiogenic molecules in mice and non-human primates.

BIOMATERIALS (2024)