4.8 Article

Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery

期刊

BIOMATERIALS
卷 33, 期 5, 页码 1455-1461

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2011.10.060

关键词

Cisplatin; Cancer chemotherapy; Nanotechnology; Single-walled carbon nanotubes; Drug delivery

资金

  1. Welch Foundation [C-0627]
  2. Ensysce Biosciences, Inc.
  3. Breast Cancer SPORE [P50 CA058183]
  4. National Cancer Institute [RO1 CA138197]
  5. Turkish Ministry of Education

向作者/读者索取更多资源

The use of chemotherapeutic drugs in cancer therapy is often limited by problems with administration such as insolubility, inefficient biodistribution, lack of selectivity, and inability of the drug to cross cellular barriers. To overcome these limitations, various types of drug delivery systems have been explored, and recently, carbon nanotube (CNT) materials have also garnered attention in the area of drug delivery. In this study, we describe the preparation, characterization, and in vitro testing of a new ultrashort single-walled carbon nanotube (US-tube)-based drug delivery system for the treatment of cancer. In particular, the encapsulation of cisplatin (CDDP), a widely-used anticancer drug, within US-tubes has been achieved, and the resulting CDDP@US-tube material characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively-coupled optical emission spectrometry (ICP-OES). Dialysis studies performed in phosphate-buffered saline (PBS) at 37 degrees C have demonstrated that CDDP release from CDDP@US-tubes can be controlled (retarded) by wrapping the CDDP@US-tubes with Pluronic-F108 surfactant. Finally, the anticancer activity of pluronic-wrapped CDDP@US-tubes has been evaluated against two different breast cancer cell lines, MCF-7 and MDA-MB-231, and found to exhibit enhanced cytotoxicity over free CDDP after 24 h. These studies have laid the foundation for developing US-tube-based delivery of chemotherapeutics, with drug release mainly limited to within cancer cells only. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Engineering, Biomedical

A novel capsid-XL32-derived adeno-associated virus serotype prompts retinal tropism and ameliorates choroidal neovascularization

Lin-Lin Luo, Jie Xu, Bing-Qiao Wang, Chen Chen, Xi Chen, Qiu-Mei Hu, Yu-Qiu Wang, Wan-Yun Zhang, Wan-Xiang Jiang, Xin-Ting Li, Hu Zhou, Xiao Xiao, Kai Zhao, Sen Lin

Summary: A novel AAV serotype, AAVYC5, introduced in this study, showed more efficient transduction into multiple retinal layers compared to AAV2, and enabled successful delivery of anti-angiogenic molecules in mice and non-human primates.

BIOMATERIALS (2024)