4.8 Article

Flotillin-dependent endocytosis and a phagocytosis-like mechanism for cellular internalization of disulfide-based poly(amido amine)/DNA polyplexes

期刊

BIOMATERIALS
卷 32, 期 11, 页码 3072-3084

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2010.12.045

关键词

Non-viral gene delivery; Endocytosis; Retinal pigment epithelium; Polyplexes

资金

  1. European Commission
  2. Kuwaity Government

向作者/读者索取更多资源

Extensive research is currently performed on designing safe and efficient non-viral carriers for gene delivery. To increase their efficiency, it is essential to have a thorough understanding of the mechanisms involved in cellular attachment, internalization and intracellular processing in target cells. In this work, we studied in vitro the cellular dynamics of polyplexes, composed of a newly developed bioreducible poly(amido amine) carrier, formed by polyaddition of N,N-cystamine bisacrylamide and 1-amino-4-butanol (p(CBA-ABOL)) on retinal pigment epithelium (RPE) cells, which are attractive targets for ocular gene therapy. We show that these net cationic p(CBA-ABOL)/DNA polyplexes require a charge-mediated attachment to the sulfate groups of cell surface heparan sulfate proteoglycans in order to be efficiently internalized. Secondly, we assessed the involvement of defined endocytic pathways in the internalization of the polyplexes in ARPE-19 cells by using a combination of endocytic inhibitors, RNAi depletion of endocytic proteins and live cell fluorescence colocalization microscopy. We found that the p(CBA-ABOL) polyplexes enter RPE cells both via flotillin-dependent endocytosis and a PAK1 dependent phagocytosis-like mechanism. The capacity of polyplexes to transfect cells was, however, primarily dependent on a flotillin-1-dependent endocytosis pathway. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据