4.6 Article

Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro

期刊

ANIMAL FEED SCIENCE AND TECHNOLOGY
卷 169, 期 3-4, 页码 185-193

出版社

ELSEVIER
DOI: 10.1016/j.anifeedsci.2011.07.004

关键词

Condensed tannins; Leucaena leucocephala hybrid-Rendang; Methane; Methanogen; Protozoa

资金

  1. Universiti Putra Malaysia [04/01/07/0075 RU]

向作者/读者索取更多资源

Different levels of purified condensed tannins (CT) extracted from Leucaena leucocephala hybrid-Rendang (LLR) were investigated for their effects on CH4 production, rumen fermentation parameters such as pH, dry matter (DM) degradability, N disappearance and volatile fatty acid (VFA) concentrations, as well as on populations of rumen methanogenic archaea and protozoa in vitro. Purified CT concentrations of 0 (control). 10, 15, 20, 25 and 30 mg, and 500 mg of oven dried guinea grass (Panicum maximum) with 40 ml of buffered rumen fluid were incubated for 24 h using an in vitro gas production procedure. Total gas (ml/g DM) decreased at a decreasing rate (linear P < 0.01; quadratic P < 0.05) with increased levels of CT inclusion. CH4 production (ml/g DM) decreased at a decreasing rate (linear P < 0.01; quadratic P < 0.01) with increasing levels of CT. Total VFA concentration (mmol/L) decreased at a decreasing rate (linear P < 0.01: quadratic P < 0.01) with increasing CT inclusions. In vitro DM degradation and N disappearance declined linearly (P < 0.01) with increasing levels of CT. Estimates of rumen methanogenic archaea and protozoa populations using microbiological methods and real-time PCR assay showed linear reductions in total methanogens (P < 0.01) and total protozoa (P < 0.01) with increasing levels of CT. Methanogens in the order Methattobacteriales also declined, but with quadratic and cubic aspects. Results suggest that CT from LLR at a relatively low level of 15 mg of CT/500 mg DM reduce CH4 production by 47%, with only 7% reduction in degradation of feed DM. However, higher CT inclusions, while further reducing CH4 emissions, have substantive negative effects on DM digestibility. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据