4.7 Article

Global Observations of Horizontal Mixing from Argo Float and Surface Drifter Trajectories

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
卷 123, 期 7, 页码 4560-4575

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018JC013750

关键词

isopycnal mixing; Argo floats; drifters; Lagrangian methods

资金

  1. NSF [OCE 1231803, OCE 0622670, OCE 0822075]

向作者/读者索取更多资源

Mixing by mesoscale eddies in the ocean plays a major role in setting the distribution of oceanic tracers, with important implications for physical and biochemical systems at local to global scales. Roach et al. (2016; https://doi.org/10.1002/2015JC011440) demonstrated that a two-particle analysis of Argo trajectories produces robust estimates of horizontal mixing in the Southern Ocean. Here we extend this analysis to produce global 1 degrees x1 degrees maps of eddy diffusivity at the nominal Argo parking depth of 1,000 m. We also applied this methodology to estimate surface eddy diffusivities from Global Drifter Program (GDP) surface drifters. The global mean eddy diffusivity was 543 +/- 155 m(2)/s at 1,000m and 2637 +/- 311 m(2)/s at the surface, with elevated diffusivities in regions of enhanced eddy kinetic energy, such as western boundary currents and along the Antarctic Circumpolar Current. The eddy kinetic energy at the equator is high at both the surface and depth, but the eddy diffusivity is only enhanced near the surface. At depth the eddy diffusivity is strongly suppressed due to the presence of mean flow. We used our observational estimates to test the validity of an eddy diffusivity parameterization that accounts for mixing suppression in the presence of zonal mean flows. Our results indicated that this parameterization generally agrees with the directly observed eddy diffusivities in the midlatitude and high-latitude oceans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据