4.6 Article

Improved performance of PEM fuel cells stack feeding switched reluctance motor using multi-objective dragonfly optimizer

期刊

NEURAL COMPUTING & APPLICATIONS
卷 31, 期 11, 页码 6909-6924

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00521-018-3524-z

关键词

Proton exchange membrane fuel cells stack; Switched reluctance motor; Optimization methods; Performance assessments

向作者/读者索取更多资源

In this article, a switched reluctance motor (SRM) powered by autonomous stacked proton exchange membrane fuel cells (PEMFC)'s stack with the purpose of optimizing their operating performances is addressed. Three key performance indices are examined that include: (1) torque per ampere ratio, (2) torque smoothness factor and (3) average starting torque. The later mentioned adapted indices characterize the objective functions that can be optimized individually and concurrently using a novel application of multi-objective dragonfly approach (MODA). The MODA is applied to generate the optimal turn (on/off) angles of H-bridge converter and the gains of a proportional-integral speed controller. A Pareto front optimal solutions are made, and the final best compromise solution is carefully chosen. The terminal voltage of the PEMFC is fine controlled by a boost converter, to overcome the noticeable decline of its voltage profile with the increase in loading current. The system under study is demonstrated at various loading conditions with necessary comparisons to other recent competing methods complete with subsequent discussions. The cropped numerical results indicate that PEMFC energy saving, reduction in SRM torque ripples and PEMFC current ripples can be enhanced. In addition, higher average starting torque of the SRM is realized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据