4.4 Article

MBE growth of few-layer 2H-MoTe2 on 3D substrates

期刊

JOURNAL OF CRYSTAL GROWTH
卷 482, 期 -, 页码 61-69

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jcrysgro.2017.10.024

关键词

Molecular beam epitaxy; Tellurites; Semiconducting materials; X-ray diffraction

资金

  1. Center for Low Energy Systems Technology (LEAST)
  2. MARCO
  3. DARPA
  4. NSF MRSEC program [DMR-1120296]
  5. National Science Foundation
  6. National Institutes of Health/National Institute of General Medical Sciences under NSF award [DMR-1332208]
  7. NSF Grant [DMR 1400432]
  8. NSF-EFRI 2DARE Grant [DMR 1433490]
  9. Emerging Frontiers & Multidisciplinary Activities
  10. Directorate For Engineering [1433490] Funding Source: National Science Foundation

向作者/读者索取更多资源

MoTe2 is the least explored material in the Molybdenum-chalcogen family. Molecular beam epitaxy (MBE) provides a unique opportunity to tackle the small electronegativity difference between Mo and Te while growing layer by layer away from thermodynamic equilibrium. We find that for a few-layer MoTe2 grown at a moderate rate of similar to 6 min per monolayer, a narrow window in temperature (above Te cell temperature) and Te:Mo ratio exists, where we can obtain pure phase 2H-MoTe2. This is confirmed using reflection high-energy electron diffraction (RHEED), Raman spectroscopy and X-ray photoemission spectroscopy (XPS). For growth on CaF2, Grazing incidence X-ray diffraction (GI-XRD) reveals a grain size of similar to 90 angstrom and presence of twinned grains. In this work, we hypothesis the presence of excess Te incorporation in MBE grown few layer 2H-MoTe2. For film on CaF2, it is based on >2 Te:Mo stoichiometry using XPS as well as a and c lattice spacing greater than bulk 2H-MoTe2. On GaAs, its based on observations of Te crystallite formation on film surface, 2 x 2 superstructure observed in RHEED and low energy electron diffraction, larger than bulk c-lattice spacing as well as the lack of electrical conductivity modulation by field effect. Finally, thermal stability and air sensitivity of MBE 2H-MoTe2 is investigated by temperature dependent XRD and XPS, respectively. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

The impacts of charge transfer, localization, and metallicity on hydrogen retention and transport capacity

Aditya Sundar, Yuqing Huang, Jianguo Yu, M. Nedim Cinbiz

Summary: Solid state hydrides, such as early transition metal hydrides, play a crucial role in the future of hydrogen energy. This study reveals the intricate bonding features and electron structure differences between early transition metal hydrides and alkali/alkaline earth metal hydrides, shedding light on their hydrogen retention and transport behavior.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2022)

Article Chemistry, Multidisciplinary

Interrogating the Effect of Assay Media on the Rate of Virus Inactivation of High-Touch Copper Surfaces: A Materials Science Approach

Carol F. Glover, Tsuyoshi Miyake, Victor Wallemacq, Jamie D. Harris, John Emery, Daniel A. Engel, Stephen J. McDonnell, John R. Scully

Summary: Contamination of high-touch surfaces with infected droplets of bodily secretions is a known route of virus transmission. Copper surfaces have the ability to inactivate human coronaviruses by releasing ions, making them a potential preventive strategy. This study investigated the virus inactivation effect on copper surfaces under realistic conditions and discovered that the half-life of the virus decreased five times compared to previous knowledge, indicating that virus inactivation on copper surfaces may be more effective than previously thought.

ADVANCED MATERIALS INTERFACES (2022)

Article Nanoscience & Nanotechnology

Molecular beam homoepitaxy of N-polar AlN on bulk AlN substrates

Jashan Singhal, Jimy Encomendero, Yongjin Cho, Len van Deurzen, Zexuan Zhang, Kazuki Nomoto, Masato Toita, Huili Grace Xing, Debdeep Jena

Summary: In this study, N-polar AlN epilayers were successfully grown on the N-face of AlN substrates using plasma-assisted molecular beam epitaxy. In situ thermal deoxidation and Al-assisted thermal desorption were used to remove native surface oxides and impurities, resulting in successful homoepitaxy. The grown AlN layer exhibited smooth surface morphologies and low structural defect densities, with the presence of interesting inversion domains.

AIP ADVANCES (2022)

Article Multidisciplinary Sciences

Molecular beam homoepitaxy of N-polar AlN: Enabling role of aluminum-assisted surface cleaning

Zexuan Zhang, Yusuke Hayashi, Tetsuya Tohei, Akira Sakai, Vladimir Protasenko, Jashan Singhal, Hideto Miyake, Huili Grace Xing, Debdeep Jena, YongJin Cho

Summary: Successful homoepitaxial growth of N-polar AlN has been achieved on large-area N-polar AlN templates using MBE. Al-assisted cleaning enables the epitaxial film to maintain N-polarity, resulting in a smooth, defect-free surface and suppression of nonradiative recombination centers.

SCIENCE ADVANCES (2022)

Article Physics, Applied

Electric field induced migration of native point defects in Ga2O3 devices

Micah S. S. Haseman, Daram N. N. Ramdin, Wenshen Li, Kazuki Nomoto, Debdeep Jena, Huili Grace Xing, Leonard J. J. Brillson

Summary: This study investigates the movement of electrically charged defects in Ga2O3 vertical trench power diodes using cathodoluminescence point spectra and hyperspectral imaging. The researchers observed the spatial rearrangement of optically active defects under strong reverse bias. These findings demonstrate the potential impact of extreme electric fields on atomic rearrangement and local doping changes in beta-Ga2O3, highlighting the importance of nanoscale device geometry in other high-power semiconductor devices.

JOURNAL OF APPLIED PHYSICS (2023)

Article Materials Science, Multidisciplinary

Design of metastable complex-concentrated alloys through composition tailoring

Seungjin Nam, Sang Jun Kim, Kook Noh Yoon, Moon J. Kim, Manuel Quevedo-Lopez, Jun Yeon Hwang, Eun Soo Park, Hyunjoo Choi

Summary: In this study, CoCrFeNi-based metastable complex-concentrated alloys were designed using composition-property contour maps, and the mechanical properties were optimized by adjusting the concentrations of Co and Ni. The results demonstrate that this approach is effective in designing complex-concentrated alloys with customized properties.

MATERIALS & DESIGN (2022)

Article Materials Science, Multidisciplinary

Gradient interface formation in Cu-Cr/diamond(Ti) composites prepared by gas pressure infiltration

Luhua Wang, Jianwei Li, Liyin Gao, Xitao Wang, Ke Xu, Hailong Zhang, Jinguo Wang, Moon J. Kim

Summary: Interface design plays a critical role in enhancing the thermal properties of Cu/diamond composite materials. In this study, Cr alloying in Cu matrix and Ti coating on diamond particles were successfully utilized to construct a TiC/Cr3C2 gradient interface, leading to improved phonon transfer at the interface. The interfacial structure of the Cu-0.5 wt%Cr/diamond(Ti) composite was characterized, showcasing a diamond/graphite/TiC/Cr3C2/Cu configuration. The presence of a graphite layer and thick Cr3C2 layer in the Cu-Cr/diamond(Ti) composite resulted in a lower thermal conductivity compared to the Cu/diamond(Ti) composite.

VACUUM (2022)

Article Chemistry, Multidisciplinary

Multifunctional Coatings on Sulfide-Based Solid Electrolyte Powders with Enhanced Processability, Stability, and Performance for Solid-State Batteries

Zachary D. Hood, Anil U. Mane, Aditya Sundar, Sanja Tepavcevic, Peter Zapol, Udochukwu D. Eze, Shiba P. Adhikari, Eungje Lee, George E. Sterbinsky, Jeffrey W. Elam, Justin G. Connell

Summary: Sulfide-based solid-state electrolytes (SSEs) have high ionic conductivity and favorable mechanical properties, making them promising for next-generation solid-state batteries. Thin Al2O3 coatings grown on Li6PS5Cl powders using atomic layer deposition simultaneously address the stability issues and improve cell performance. These coated powders exhibit higher ionic conductivities, lower electronic conductivities, and improved stability at the Li-SSE interface, leading to significantly improved battery cycle life.

ADVANCED MATERIALS (2023)

Article Physics, Applied

Polarization-induced 2D electron gases in N-polar AlGaN/AlN heterostructures on single-crystal AlN substrates

Zexuan Zhang, Jashan Singhal, Shivali Agrawal, Eungkyun Kim, Vladimir Protasenko, Masato Toita, Huili Grace Xing, Debdeep Jena

Summary: Polarization-induced carriers are important for achieving high electrical conductivity in ultrawide bandgap semiconductor AlGaN. However, studies on these carriers in N-polar AlGaN are rare. This study observes and characterizes polarization-induced two-dimensional electron gases (2DEGs) in N-polar AlGaN/AlN heterostructures with varying Al content. The results provide valuable insights for designing high electron mobility transistors and UV photonic devices.

APPLIED PHYSICS LETTERS (2023)

Article Physics, Applied

AlN/AlGaN/AlN quantum well channel HEMTs

Jashan Singhal, Eungkyun Kim, Austin Hickman, Reet Chaudhuri, Yongjin Cho, Huili Grace Xing, Debdeep Jena

Summary: We conducted a study on the compositional dependence of electrical characteristics in AlxGa1-xN quantum well channel-based AlN/AlGaN/AlN high electron mobility transistors (HEMTs), with x values of 0.25, 0.44, and 0.58. The use of selectively regrown n-type GaN Ohmic contacts resulted in increased contact resistance with higher Al content in the channel. The DC HEMT device characteristics showed a progressive reduction in maximum drain current densities and a simultaneous decrease in threshold voltage with increasing x values.

APPLIED PHYSICS LETTERS (2023)

Article Engineering, Electrical & Electronic

15-GHz Epitaxial AlN FBARs on SiC Substrates

Wenwen Zhao, Mohammad Javad Asadi, Lei Li, Reet Chaudhuri, Kazuki Nomoto, Huili Grace Xing, James C. M. Hwang, Debdeep Jena

Summary: This study demonstrates epitaxial AlN thin-film bulk acoustic resonators (FBARs) on SiC substrates with first-order thickness extensional modes of 15-17 GHz. The achieved quality factor Q(max) of approximately 443, electromechanical coupling coefficient k(eff)(2) of approximately 2.3%, and f center dot Q of approximately 6.65 THz figure of merit are among the highest in the Ku-band (12-18 GHz). The clean primary mode with a high quality factor allows these epitaxial AlN FBARs to be used in Ku-band acoustic filters with clean bands and steep rejection. Additionally, their compatibility with AlN/GaN/AlN quantum well high-electron-mobility transistors (QW HEMTs) allows for monolithic integration with HEMT low noise amplifiers (LNAs) and power amplifiers (PAs).

IEEE ELECTRON DEVICE LETTERS (2023)

Article Biochemistry & Molecular Biology

Loss of OPT3 function decreases phloem copper levels and impairs crosstalk between copper and iron homeostasis and shoot-to-root signaling in Arabidopsis thaliana

Ju-Chen Chia, Jiapei Yan, Maryam Rahmati Ishka, Marta Marie Faulkner, Eli Simons, Rong Huang, Louisa Smieska, Arthur Woll, Ryan Tappero, Andrew Kiss, Chen Jiao, Zhangjun Fei, Leon Kochian, Elsbeth Walker, Miguel Pineros, Olena K. Vatamaniuk

Summary: Arabidopsis OPT3 transports Cu and Fe into phloem companion cells and plays a role in systemic signaling of Cu and Fe deficiencies.

PLANT CELL (2023)

Article Chemistry, Multidisciplinary

Origins of Fermi Level Pinning for Ni and Ag Metal Contacts on Tungsten Dichalcogenides

Xinglu Wang, Yaoqiao Hu, Seong Yeoul Kim, Rafik Addou, Kyeongjae Cho, Robert M. Wallace

Summary: This study investigates the origins of Fermi level (E-F) pinning for Ni and Ag contacts on W-TMDs by considering interface chemistry, band alignment, impurities, and imperfections of W-TMDs, contact metal adsorption mechanism, and the resultant electronic structure. The origins of E-F pinning at a covalent contact metal/W-TMD interface are defects, impurities, and interface reaction products, while for a van der Waals contact metal/TMD system, the primary factor responsible for E-F pinning is the electronic modification of the TMDs resulting from defects and impurities.

ACS NANO (2023)

Article Materials Science, Multidisciplinary

Thermal conductivity enhancement of aluminum scandium nitride grown by molecular beam epitaxy

Gustavo A. Alvarez, Joseph Casamento, Len van Deurzen, Md Irfan Khan, Kamruzzaman Khan, Eugene Jeong, Elaheh Ahmadi, Huili Grace Xing, Debdeep Jena, Zhiting Tian

Summary: Aluminum scandium nitride (AlScN) is gaining attention for its larger piezoelectric response compared to AlN, but alloying Sc with AlN reduces thermal conductivity. Self-heating limits power handling in AlScN devices, and we compared thermal conductivity of AlScN grown on different substrates.

MATERIALS RESEARCH LETTERS (2023)

Article Materials Science, Multidisciplinary

Automated hierarchical screening of refractory multicomponent alloys with high intrinsic ductility and surface passivation potency

Aditya Sundar, David Bugallo Ferron, Yong-Jie Hu, Liang Qi

Summary: This study proposes a hierarchical workflow for the initial screening of promising body-centered-cubic (BCC) refractory multicomponent alloys. The workflow utilizes physics-informed surrogate models and thermodynamic modeling to select representative candidates based on various criteria and verification methods.

MRS COMMUNICATIONS (2022)

Article Crystallography

Study of AlN growth using AMEC Prismo HiT3 MOCVD reactor

Jianzheng Hu, Long Yan, Ning Zhou, Yao Chen, Xiaoni Yang, Lianqiao Yang, Shiping Guo

Summary: The effect and mechanism of carrier gas velocity, V/III ratio, and carrier gas velocity match on the growth rate of AlN were investigated in this study. The results showed that the growth rate of AlN initially increased with hydrogen flow rate, reached saturation, and then decreased monotonically. The turning point value depended on the equipment and process. By increasing the MO VM, the growth rate of AlN could be improved, but the uniformity deteriorated due to turbulence and loss of uniform boundary layer. High quality AlN films were successfully grown on nano-patterned sapphire substrates with improved crystalline quality and atomic smooth surfaces.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Molecular dynamics simulation of homogeneous nucleation of melting in superheated sodium crystal

Tingting Ma, Yang Li, Kangning Sun, Qinglin Cheng, Sen Li

Summary: This study investigates the melting process and nucleation behavior of sodium crystals using molecular dynamics simulation. The results show good agreement between simulated and experimental values for the melting temperature, density, and radial distribution function of sodium. The diffusion coefficient of liquid sodium increases linearly with temperature, and the homogeneous nucleation rate of melting in superheated sodium crystal exponentially increases with temperature. The findings provide theoretical support for applications involving heat and mass transfer in sodium-related systems.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Fabrication of epitaxial V2O3 thin films on Al2O3 substrates via mist chemical vapor deposition

Hisato Nishii, Shintarou Iida, Akira Yamasaki, Takumi Ikenoue, Masao Miyake, Toshiya Doi, Tetsuji Hirato

Summary: Epitaxial V2O3 films were fabricated on sapphire substrates using mist chemical vapor deposition (mist CVD) method, eliminating the need for high vacuum conditions. The films can be grown on sapphire substrates even under atmospheric pressure, with the optimal growth temperature at 823 K. The films grown at 823 K exhibit a metal-insulator transition at approximately 155 K. The film on C-plane sapphire exhibits a lower transition temperature compared to those on R- and A-plane sapphire substrates.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Controlling morphology of NiSb needles in InSb through low temperature gradient horizontal gradient freeze

Jani Jesenovec, Kevin Zawilski, Peter Alison, Stephan J. Meschter, Sambit K. Saha, Andrew J. Sepelak, Peter G. Schunemann

Summary: In this study, NiSb needles were successfully formed in InSb by manipulating the growth rate and adding NiSb. These needle structures in InSb can be used to tune the magnetoresistance of devices. Additionally, undoped InSb crystals demonstrated good infrared transmission at low growth rates.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Synthesis, crystal growth, and its characterization of 2-amino-4-methylpyridinium oxalate

D. Joseph Daniel, P. Karuppasamy, H. J. Kim

Summary: The 2-amino 4-methyl pyridinium oxalate (2A4MPO) compound was synthesized and its crystal structure, functional groups, thermal stability, electrical properties, and third-order nonlinear optical properties were studied. The results demonstrate that the synthesized crystal has good structural integrity, thermal stability, and potential for third-order nonlinear optical applications.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Twenty years crystal growth of solar silicon: My serendipity journey

C. W. Lan

Summary: The past two decades have witnessed a significant transformation in solar silicon crystal growth, especially in the competition between multi-crystalline silicon (Multi-Si) and mono-crystalline silicon (Mono-Si). The demand for this crucial material has exponentially surged, with silicon solar panels capturing over 95% of the global PV market share. The advancements in crystal growth technology during this period have set historical benchmarks, with the market share shifting from high-performance multi-crystalline silicon (HPM-Si) to CZ silicon.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Design and numerical analysis of a novel argon gas tube to reduce impurities in large size casting crystalline silicon furnace

Peiyao Hao, Lili Zheng, Hui Zhang

Summary: A novel design of argon gas tube for removing impurities during silicon ingot growth was developed, and numerical simulations showed that it can effectively extract SiO.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Dependence of reaction time in hydrothermal synthesis of MoS2 quantum dots: An investigation using optical tools and fractal analysis

Geetika Sahu, Chanchal Chakraborty, Subhadeep Roy, Souri Banerjee

Summary: This article discusses the novel fractal nature of hydrothermally synthesized MoS2 QDs. By adjusting the reaction time, the study found that the average size of QDs increases and then decreases with longer reaction times. STEM images indicate that shorter reaction times lead to sheet formation, while extended reaction times cause sheets to fragment into QDs.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

High-throughput thermodynamic study of SiC high-temperature chemical vapor deposition from TMS-H2

Pengjian Lu, Wei Huang, Junjun Wang, Haitao Yang, Shiyue Guo, Bin Li, Ting Wang, Chitengfei Zhang, Rong Tu, Song Zhang

Summary: A systematic study on the tetramethylsilane-hydorgen (TMS-H-2) system for the deposition of pure single-crystal SiC by high-temperature chemical vapor deposition (HTCVD) method is conducted. The study investigates the effect of temperature, pressure, and H-2:TMS ratio on the deposition conditions and provides a theoretical basis and guidance for improving the quality and cost of industrial production of single-crystal SiC.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Molten salt synthesis of A-site disordered niobate microcrystals with tetragonal tungsten bronze structure

Xinyu Jiang, Liangliang Liu, Yanqing Liu, Yan Wang, Zhaoping Hou

Summary: Investigation on the preparation of anisometric templated textured high entropy or multi-element doped ferroelectric ceramics was conducted using A-site disordered niobate microcrystals. The effects of process parameters on the morphology and chemical composition were studied, and the photocatalytic properties of the microcrystals were evaluated.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Synthesis and crystallinity integration of copper nanoparticles by reaction medium

Mobashsara Tabassum, Md. Ashraful Alam, Sabrina Mostofa, Raton Kumar Bishwas, Debasish Sarkar, Shirin Akter Jahan

Summary: In this study, high crystallinity copper nanoparticles were synthesized by altering the reaction medium at low temperatures. The results show that changing the reaction medium can reduce the surface energy of precursors and promote the formation of highly crystalline copper nanoparticles.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Cu2ZnGeSe4 single crystals: Growth, structure and temperature dependence of band gap

Ivan Bodnar, Vitaly V. Khoroshko, Veronika A. Yashchuk, Valery F. Gremenok, Mohsin Kazi, Mayeen U. Khandaker, Tatiana I. Zubar, Daria I. Tishkevich, Alex Trukhanov, Sergei Trukhanov

Summary: This work presents the production of single crystals of Cu2ZnGeSe4, a semiconducting quaternary compound, using a gas chemical method with iodine as a transporter. The phase state, crystal structure, and lattice constants of the synthesized samples were refined and determined. The band gap of Cu2ZnGeSe4 was calculated using transmission spectrum and it was found that the band gap increases by 12% with decreasing temperature in the range of 20-300 K.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Effect of growth temperature of NH3-MBE grown GaN-on-Si layers on donor concentration and leakage currents

Timur Malin, Igor Osinnykh, Vladimir Mansurov, Dmitriy Protasov, Sergey Ponomarev, Denis Milakhin, Konstantin Zhuravlev

Summary: The effect of growth temperature on the buffer leakage currents of GaN-on-Si layers was investigated. It was found that higher growth temperature results in lower leakage currents. The defects in GaN layers grown at different temperatures were studied using photoluminescence technique, and a correlation between leakage currents, structural perfection, and donor concentration in GaN-on-Si layers was established. It was also observed that reduced growth temperature leads to the formation of inversion domains.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Numerical study of continuous Czochralski (CCz) silicon single crystal growth in a double-side heater

Thi-Hoai-Thu Nguyen, Jyh-Chen Chen

Summary: The effect of heater power control on heat, flow, and oxygen transport for CCz crystal growth was studied. Shorter upper side heater design could improve crystal quality and growth, but with higher power consumption.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Contributions to the development of crystal growth technologies

Peter Rudolph

Summary: This article presents an overview of selected contributions to the development of crystal growth technology by the Laudise Prize awardee 2023. It discusses various aspects such as shaped crystal growth, the correlation between melt structure and crystal quality, control of intrinsic defects and inclusions, prevention of dislocation cell patterns, and melt growth experiments under a travelling magnetic field.

JOURNAL OF CRYSTAL GROWTH (2024)