4.4 Article

Investigation of amorphous calcium carbonate's formation under high concentration of magnesium: The prenucleation cluster pathway

期刊

JOURNAL OF CRYSTAL GROWTH
卷 494, 期 -, 页码 8-16

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jcrysgro.2018.05.001

关键词

Impurities; Free energy barrier; Supersaturated solutions; Amorphous calcium carbonate; Magnesium

资金

  1. Natural Science Foundation of China (NSFC) [U1507105]
  2. National Sci-Tech Support Plan [2015BAB10B01]
  3. National Key RD Program [2016YFC0401203]
  4. China Scholarship Councilamad

向作者/读者索取更多资源

This paper investigates the formation of amorphous calcium carbonate under high magnesium concentration (Mg/Ca = 6) via several novel methods. While feeding calcium chloride solution into the mixed solution of magnesium chloride and sodium carbonate, a large amount of calcium ions (>0.13 mol/L) stably coexisted with the amorphous calcium carbonate in the solution. The calcium concentration detected by the calcium ion selective electrode was proportional to the calcium concentration added. Surprisingly, the ratio of magnesium to calcium in the amorphous calcium carbonate was just 0.07, and the concentration of calcium continued to increase in the solution after the formation of the amorphous calcium carbonate. We propose that stable prenucleation cluster formed in the solution, which stably coexisted with the amorphous calcium carbonate because of the incorporation of hydrated magnesium ions. The high dehydration free energy barrier of magnesium ions led to its slow dehydration. Also, the hydroxide ion helped to bypass the high dehydration free energy barrier. This research indicates the possible significant role of prenucleation cluster pathway in the calcium carbonate crystallization. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Crystallography

Mechanism of Magnesium's Influence on Calcium Carbonate Crystallization: Kinetically Controlled Multistep Crystallization

Jie Zhang, Chunhua Dong, Yuzhu Sun, Jianguo Yu

CRYSTAL RESEARCH AND TECHNOLOGY (2018)

Article Chemistry, Medicinal

General Protocol for the Accurate Prediction of Molecular 13C/1H NMR Chemical Shifts via Machine Learning Augmented DFT

Peng Gao, Jun Zhang, Qian Peng, Jie Zhang, Vassiliki-Alexandra Glezakou

JOURNAL OF CHEMICAL INFORMATION AND MODELING (2020)

Article Chemistry, Medicinal

Comparative Study of Deep Generative Models on Chemical Space Coverage

Jie Zhang, Rocio Mercado, Ola Engkvist, Hongming Chen

Summary: This study introduces a novel metric based on chemical space coverage for evaluating and comparing the performance of deep molecular generative models. Experimental results show significant performance variations among different generative models when using limited training data, allowing for clear differentiation of models with stronger generalization capabilities.

JOURNAL OF CHEMICAL INFORMATION AND MODELING (2021)

Article Chemistry, Medicinal

De Novo Molecule Design Using Molecular Generative Models Constrained by Ligand-Protein Interactions

Jie Zhang, Hongming Chen

Summary: This paper proposes a novel molecular deep generative model that adopts a recurrent neural network architecture and ligand-protein interaction fingerprint as constraints for generating compounds with similar binding modes.

JOURNAL OF CHEMICAL INFORMATION AND MODELING (2022)

Article Chemistry, Physical

A general QSPR protocol for the prediction of atomic/inter-atomic properties: a fragment based graph convolutional neural network (F-GCN)

Peng Gao, Jie Zhang, Hongbo Qiu, Shuaifei Zhao

Summary: In this study, a fragment-based graph convolutional neural network (F-GCN) was developed for the prediction of atomic/inter-atomic properties. The results were comparable to experimental measurements, with reduced computational cost. F-GCN showed efficient structural prediction capabilities and performed well in tests.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2021)

Article Chemistry, Physical

Accurate predictions of aqueous solubility of drug molecules via the multilevel graph convolutional network (MGCN) and SchNet architectures

Peng Gao, Jie Zhang, Yuzhu Sun, Jianguo Yu

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2020)

Article Crystallography

Study of AlN growth using AMEC Prismo HiT3 MOCVD reactor

Jianzheng Hu, Long Yan, Ning Zhou, Yao Chen, Xiaoni Yang, Lianqiao Yang, Shiping Guo

Summary: The effect and mechanism of carrier gas velocity, V/III ratio, and carrier gas velocity match on the growth rate of AlN were investigated in this study. The results showed that the growth rate of AlN initially increased with hydrogen flow rate, reached saturation, and then decreased monotonically. The turning point value depended on the equipment and process. By increasing the MO VM, the growth rate of AlN could be improved, but the uniformity deteriorated due to turbulence and loss of uniform boundary layer. High quality AlN films were successfully grown on nano-patterned sapphire substrates with improved crystalline quality and atomic smooth surfaces.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Molecular dynamics simulation of homogeneous nucleation of melting in superheated sodium crystal

Tingting Ma, Yang Li, Kangning Sun, Qinglin Cheng, Sen Li

Summary: This study investigates the melting process and nucleation behavior of sodium crystals using molecular dynamics simulation. The results show good agreement between simulated and experimental values for the melting temperature, density, and radial distribution function of sodium. The diffusion coefficient of liquid sodium increases linearly with temperature, and the homogeneous nucleation rate of melting in superheated sodium crystal exponentially increases with temperature. The findings provide theoretical support for applications involving heat and mass transfer in sodium-related systems.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Fabrication of epitaxial V2O3 thin films on Al2O3 substrates via mist chemical vapor deposition

Hisato Nishii, Shintarou Iida, Akira Yamasaki, Takumi Ikenoue, Masao Miyake, Toshiya Doi, Tetsuji Hirato

Summary: Epitaxial V2O3 films were fabricated on sapphire substrates using mist chemical vapor deposition (mist CVD) method, eliminating the need for high vacuum conditions. The films can be grown on sapphire substrates even under atmospheric pressure, with the optimal growth temperature at 823 K. The films grown at 823 K exhibit a metal-insulator transition at approximately 155 K. The film on C-plane sapphire exhibits a lower transition temperature compared to those on R- and A-plane sapphire substrates.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Controlling morphology of NiSb needles in InSb through low temperature gradient horizontal gradient freeze

Jani Jesenovec, Kevin Zawilski, Peter Alison, Stephan J. Meschter, Sambit K. Saha, Andrew J. Sepelak, Peter G. Schunemann

Summary: In this study, NiSb needles were successfully formed in InSb by manipulating the growth rate and adding NiSb. These needle structures in InSb can be used to tune the magnetoresistance of devices. Additionally, undoped InSb crystals demonstrated good infrared transmission at low growth rates.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Synthesis, crystal growth, and its characterization of 2-amino-4-methylpyridinium oxalate

D. Joseph Daniel, P. Karuppasamy, H. J. Kim

Summary: The 2-amino 4-methyl pyridinium oxalate (2A4MPO) compound was synthesized and its crystal structure, functional groups, thermal stability, electrical properties, and third-order nonlinear optical properties were studied. The results demonstrate that the synthesized crystal has good structural integrity, thermal stability, and potential for third-order nonlinear optical applications.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Twenty years crystal growth of solar silicon: My serendipity journey

C. W. Lan

Summary: The past two decades have witnessed a significant transformation in solar silicon crystal growth, especially in the competition between multi-crystalline silicon (Multi-Si) and mono-crystalline silicon (Mono-Si). The demand for this crucial material has exponentially surged, with silicon solar panels capturing over 95% of the global PV market share. The advancements in crystal growth technology during this period have set historical benchmarks, with the market share shifting from high-performance multi-crystalline silicon (HPM-Si) to CZ silicon.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Design and numerical analysis of a novel argon gas tube to reduce impurities in large size casting crystalline silicon furnace

Peiyao Hao, Lili Zheng, Hui Zhang

Summary: A novel design of argon gas tube for removing impurities during silicon ingot growth was developed, and numerical simulations showed that it can effectively extract SiO.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Dependence of reaction time in hydrothermal synthesis of MoS2 quantum dots: An investigation using optical tools and fractal analysis

Geetika Sahu, Chanchal Chakraborty, Subhadeep Roy, Souri Banerjee

Summary: This article discusses the novel fractal nature of hydrothermally synthesized MoS2 QDs. By adjusting the reaction time, the study found that the average size of QDs increases and then decreases with longer reaction times. STEM images indicate that shorter reaction times lead to sheet formation, while extended reaction times cause sheets to fragment into QDs.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

High-throughput thermodynamic study of SiC high-temperature chemical vapor deposition from TMS-H2

Pengjian Lu, Wei Huang, Junjun Wang, Haitao Yang, Shiyue Guo, Bin Li, Ting Wang, Chitengfei Zhang, Rong Tu, Song Zhang

Summary: A systematic study on the tetramethylsilane-hydorgen (TMS-H-2) system for the deposition of pure single-crystal SiC by high-temperature chemical vapor deposition (HTCVD) method is conducted. The study investigates the effect of temperature, pressure, and H-2:TMS ratio on the deposition conditions and provides a theoretical basis and guidance for improving the quality and cost of industrial production of single-crystal SiC.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Molten salt synthesis of A-site disordered niobate microcrystals with tetragonal tungsten bronze structure

Xinyu Jiang, Liangliang Liu, Yanqing Liu, Yan Wang, Zhaoping Hou

Summary: Investigation on the preparation of anisometric templated textured high entropy or multi-element doped ferroelectric ceramics was conducted using A-site disordered niobate microcrystals. The effects of process parameters on the morphology and chemical composition were studied, and the photocatalytic properties of the microcrystals were evaluated.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Synthesis and crystallinity integration of copper nanoparticles by reaction medium

Mobashsara Tabassum, Md. Ashraful Alam, Sabrina Mostofa, Raton Kumar Bishwas, Debasish Sarkar, Shirin Akter Jahan

Summary: In this study, high crystallinity copper nanoparticles were synthesized by altering the reaction medium at low temperatures. The results show that changing the reaction medium can reduce the surface energy of precursors and promote the formation of highly crystalline copper nanoparticles.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Cu2ZnGeSe4 single crystals: Growth, structure and temperature dependence of band gap

Ivan Bodnar, Vitaly V. Khoroshko, Veronika A. Yashchuk, Valery F. Gremenok, Mohsin Kazi, Mayeen U. Khandaker, Tatiana I. Zubar, Daria I. Tishkevich, Alex Trukhanov, Sergei Trukhanov

Summary: This work presents the production of single crystals of Cu2ZnGeSe4, a semiconducting quaternary compound, using a gas chemical method with iodine as a transporter. The phase state, crystal structure, and lattice constants of the synthesized samples were refined and determined. The band gap of Cu2ZnGeSe4 was calculated using transmission spectrum and it was found that the band gap increases by 12% with decreasing temperature in the range of 20-300 K.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Effect of growth temperature of NH3-MBE grown GaN-on-Si layers on donor concentration and leakage currents

Timur Malin, Igor Osinnykh, Vladimir Mansurov, Dmitriy Protasov, Sergey Ponomarev, Denis Milakhin, Konstantin Zhuravlev

Summary: The effect of growth temperature on the buffer leakage currents of GaN-on-Si layers was investigated. It was found that higher growth temperature results in lower leakage currents. The defects in GaN layers grown at different temperatures were studied using photoluminescence technique, and a correlation between leakage currents, structural perfection, and donor concentration in GaN-on-Si layers was established. It was also observed that reduced growth temperature leads to the formation of inversion domains.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Numerical study of continuous Czochralski (CCz) silicon single crystal growth in a double-side heater

Thi-Hoai-Thu Nguyen, Jyh-Chen Chen

Summary: The effect of heater power control on heat, flow, and oxygen transport for CCz crystal growth was studied. Shorter upper side heater design could improve crystal quality and growth, but with higher power consumption.

JOURNAL OF CRYSTAL GROWTH (2024)

Article Crystallography

Contributions to the development of crystal growth technologies

Peter Rudolph

Summary: This article presents an overview of selected contributions to the development of crystal growth technology by the Laudise Prize awardee 2023. It discusses various aspects such as shaped crystal growth, the correlation between melt structure and crystal quality, control of intrinsic defects and inclusions, prevention of dislocation cell patterns, and melt growth experiments under a travelling magnetic field.

JOURNAL OF CRYSTAL GROWTH (2024)