4.6 Article

The development and evaluation of β-glucosidase immobilized magnetic nanoparticles as recoverable biocatalysts

期刊

BIOCHEMICAL ENGINEERING JOURNAL
卷 133, 期 -, 页码 66-73

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bej.2018.01.017

关键词

beta-Glucosidase; Magnetic nanoparticle; Cellobiose; Recyclable biocatalysts

资金

  1. North Central Regional Sun Grant Center at South Dakota State University - US Department of Transportation, Office of the Secretary [DTOS59-07-G-00054]
  2. School of Energy Resources (SER) at the University of Wyoming

向作者/读者索取更多资源

Magnetic nanoparticle (MNP) solid core supports bound with beta-glucosidase (beta G) were evaluated as recyclable biocatalysts. To determine whether the relative positioning of immobilized beta G to MNP surfaces impacts enzyme activity, MNPs were conjugated with beta G using a glutaraldehyde cross-linker for proximal binding with different polyethylene glycol spacer-linkers (MW: 200, 400, 1000). MNP surface modifications were validated by X-ray photoelectron spectroscopy and the measurement of saturation magnetization for the bioconjugates revealed minor decreases in magnetic moments relative to core MNPs. All four bioconjugates showed similar binding efficiencies for beta G, but measured increases in K-m values and decreases in V-max values, regardless of the spacer length, indicated that the specific activity of beta G was lowered upon enzyme immobilization and spacer lengths were negligible. Despite a reduction in beta G activity, immobilization conferred thermal stability under conditions in which the native enzyme is inactivated. To evaluate the recycling properties of the bioconjugates, enzyme activity measurements were conducted for ten consecutive rounds at 45 degrees C. The bioconjugates hydrolyzed total amounts of p-nitrophenyl beta-D-glucoside comparable to a single application of unmodified beta G following the third recycling round along with significant activity after ten rounds. Based on these results, the enhanced stability of immobilized beta G on recoverable MNPs provides a means for reducing the amount of beta G required for cellulose hydrolysis, thereby reducing costs associated with ethanol production. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biotechnology & Applied Microbiology

Economic optimization of antibody capture through Protein A affinity nanofiber chromatography

Yiran Qu, Innocent Bekard, Ben Hunt, Jamie Black, Louis Fabri, Sally L. Gras, Sandra. E. Kentish

Summary: This study compares the performance of a nanofiber device and a resin column for antibody capture. The nanofiber device has a larger housing volume and lower binding capacity, but comparable eluate purity to the resin column. It shows high stability, can be used for multiple cycles, and maintains consistent eluate quality when scaled up. The use of a single nanofiber device can significantly reduce costs compared to a resin column, especially when the number of batches is limited.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

A two-phase approach optimizing productivity for a mAb-producing CHO cell culture process using dynamic response surface methodology models

Brandon Moore, Christos Georgakis, Chris Antoniou, Sarwat Khattak

Summary: Fed-batch cell culture processes are commonly used in biomanufacturing due to their simplicity and applicability in cGMP environments. However, the challenge lies in the changing physiochemical conditions within the bioreactor as the cell density changes. Traditional response surface models (RSMs) are commonly used for optimization but are limited by their use of time-invariant factors. Dynamic RSM (DRSM) models can predict the time-dependent impact of process inputs, allowing for optimization of process operations that change over time.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Adsorption of Pb(II) and Cu(II) by succinic anhydride-modified apple pomace

Lin Li, Yunfan Bai, Chuhua Qi, Yile Du, Xiaoxiao Ma, Yutong Li, Pingping Wu, Shuangli Chen, Sijing Zhang

Summary: A succinic anhydride-modified apple pomace (SAMAP) was synthesized to address environmental issues caused by the accumulation of apple pomace and effectively treat heavy metal ions. SAMAP exhibited high adsorption capacity for Cu(II) and Pb(II), suggesting its potential application in wastewater treatment.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

A risk-aware assessment for buffer recycling across unit operations for monoclonal antibody purification and its potential

Peter Satzer

Summary: Water for injection (WFI) production in the biopharmaceutical industry consumes excessive amounts of water and energy. Recycling buffers can potentially save up to 90% of resources, but achieving the full theoretical potential is impossible when a risk-aware design is used. Universal risk-based assessment is important for regulatory authorities to consider the implementation of such a strategy.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Expression of ATP-binding cassette transporter proteins AatA or MdlB facilitates butyric acid production in Clostridium tyrobutyricum

Gaoya Sun, Lingkai Jin, Guangxue Wang, Xiaoge Wang, Jin Huang

Summary: In this study, heterologous expression and homologous overexpression of ABC transporter proteins AatA and MdlB were found to improve butyric acid production in C. tyrobutyricum. The overexpression of these proteins upregulated the expression levels of key enzymes in the acetate synthesis pathway and promoted the synthesis and secretion of acetic acid. Additionally, the increase in ATPase activity facilitated sugar utilization, induced extracellular secretion of acetate, and shortened fermentation periods.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Transition of stability of putidaredoxin reductase by introducing proline

Taiki Okamura, Rina Aritomi, Takuya Matsumoto, Ryosuke Yamada, Hidehiko Hirakawa, Hiroyasu Ogino

Summary: In this study, proline was introduced to improve the stability of putidaredoxin reductase (PdR) in the Pseudomonas putida cytochrome P450 system. It was found that PdR_T221P had a longer half-life at high temperatures compared to wild-type PdR, but a shorter half-life in the presence of methanol. Molecular dynamics simulations supported these findings.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Iron-carbon micro-electrolysis material enhanced high-solid anaerobic digestion: Performance and microbial mechanism

Yuying Hu, Xiaofan Wang, Shihao Zhang, Zimu Liu, Tengfang Hu, Xin Wang, Xiaoming Peng, Hongling Dai, Jing Wu, Fengping Hu

Summary: This study investigates the effect of iron-carbon micro-electrolysis (ICME) materials on high-solid anaerobic digestion (HSAD). The results show that ICME materials promote methane production in HSAD by increasing the attachment area of microorganisms and facilitating symbiotic metabolism of certain bacterial species. This study provides new insights into microbial mechanisms and enhances our understanding of ICME material enhancement in HSAD.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

A model-based approach for evaluating the effects of sludge rheology on methane production during high solid anaerobic digestion: Focusing on mass transfer resistance

Jibao Liu, Yufeng Xu, Yuansong Wei

Summary: This study investigated the role of sludge rheology in anaerobic digestion (AD) and found that rheological properties increased with the increase of solid content, resulting in a negative effect on methane production. An extended ADM1 model revealed that enhanced sludge rheological properties increased mass diffusion resistance and reduced uptake rate of acetate.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Synergistic action of Acinetobacter baumannii and Talaromyces sp.: Function of enzymes in crude oil degradation

Xiaoyan Liu, Zongze Chen, Dewen Kong, Xinying Zhang, Chuanhua Wang, Yongqi Wang

Summary: This study explored the role of intracellular and extracellular enzymes of Acinetobacter baumannii and Talaromyces sp. in the degradation of crude oil. The extracellular enzymes of Talaromyces sp. were more effective in degrading n-alkanes, while those of Acinetobacter baumannii had a better effect on aromatic hydrocarbons. The degradation enzyme systems of both bacteria and fungi complemented each other, improving the overall degradation ability.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Biochar enhances microbial degradation of phenol in water: Response surface optimization

Jing Dong, Lingli Xu, Yuxiang Liu, Li Ren, Ke Yuan

Summary: The utilization of biochar-immobilized microorganisms is an effective method for eliminating phenol from water. The high susceptibility of bacteria to environmental factors is a challenge for practical implementation. In this study, biochar was used to reduce microbial susceptibility and enhance phenol removal. The addition of biochar altered the dominant species of phenol-degrading bacteria and response surface analysis indicated the significant influence of biochar pyrolysis temperature and experimental temperature on phenol removal rate.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Removal of metalloids and heavy metals from acid mine drainage using biosynthesized Fe/Cu NPs

Zibin Pan, Mengying Liu, Zuliang Chen

Summary: This study successfully removed metalloids and heavy metals from acid mine drainage (AMD) using bio-synthesized Fe/Cu nanoparticles (Fe/Cu NPs). The Fe/Cu NPs showed high removal capacities and the presence of organic substances contributed to their stability.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Treatment of printing and dyeing wastewater using Fenton combined with ceramic microfiltration membrane bioreactor

Guangbing Liu, Han Zhang, Jincan Huang, Lu Zhang, Teng Zhang, Xuemin Yu, Weijing Liu, Chunkai Huang

Summary: This study investigated the effect of Fenton pre-treatment on the treatment efficiency of printing and dyeing wastewater (PDW) using two anaerobic/aerobic-membrane bioreactors (A/O-MBRs). The results showed that Fenton pre-treatment significantly improved the removal efficiency of COD and AOX in PDW, and reduced membrane fouling. The Shannon indices and metagenomics analysis indicated that the microbial diversity in anaerobic flocs was higher than that in aerobic flocs, and EC3.1.1.45 and pcaI were identified as key functional genes.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Industrial internet of things: What does it mean for the bioprocess industries?

Lidia Borgosz, Duygu Dikicioglu

Summary: The Industrial Internet of Things (IIoT) is a system that connects devices and provides real-time insight into industrial processes. However, the complexity and regulatory requirements of the biomanufacturing sector make it challenging to implement IIoT. There is a need for universal solutions to overcome this challenge and advance the field of biomanufacturing.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Enhanced degradation of phenols and quinoline in coal gasification wastewater by iron-carbon multiple micro-electric field coupled with anaerobic co-digestion

Yajie Li, Weikang Kong, Yuyao Zhang, Huarui Zhou, Hongbo Liu, Salma Tabassum

Summary: In this study, the iron-carbon multi-micro electric field coupling anaerobic co-digestion technique was used to treat coal gasification wastewater (CGW). The experimental results showed that under optimal operating conditions, this technique can significantly reduce the toxicity of the wastewater and achieve high removal efficiencies. Additionally, the analysis of microbial communities revealed that the coupling system promotes direct interspecies electron transfer.

BIOCHEMICAL ENGINEERING JOURNAL (2024)

Article Biotechnology & Applied Microbiology

Progressive pollution abatement in raw dairy wastewater induced by the algae Poterioochromonas malhamensis with a high-value biomass yield

Aparecido Nivaldo Modenes, Debora Gozzi Fernandes, Daniela Estelita Goes Trigueros, Matheus Guilherme Amador, Fernando Rodolfo Espinoza-Quinones, Taysa de Souza Braniz, Adilson Ricken Schuelter, Glacy Jaqueline da Silva, Lucimar Pereira Bonett

Summary: This study aimed to systematically remove organic pollutants from raw dairy wastewater with high concentrations of COD, TOC, and TN using Poterioochromonas malhamensis algae strains. The results showed that the biomass yield rate using FP-PBRs was 10% higher than tubular PBRs, and the organic pollution in wastewater was significantly reduced with a decrease of about 98% in COD, 95% in TN, and 92% in TOC.

BIOCHEMICAL ENGINEERING JOURNAL (2024)