4.7 Article

Presenilin 1 is necessary for neuronal, but not glial, EGFR expression and neuroprotection via γ-secretase-independent transcriptional mechanisms

期刊

FASEB JOURNAL
卷 29, 期 9, 页码 3702-3712

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.15-270645

关键词

Alzheimer disease; EGFR mRNA; neurodegeneration; survival signaling

资金

  1. U.S. National Institutes of Health (NIH) from National Institute on Aging [AG-17926, AG-08200, AG-05138]
  2. NIH from National Institute of Neurological Disorders and Stroke [NS047229]

向作者/读者索取更多资源

Epidermal growth factor receptor (EGFR) plays pivotal roles in cell proliferation, differentiation, and tissue development, while EGFs protect neurons from toxic insults by binding EGFR and stimulating survival signaling. Furthermore, recent evidence implicates this receptor in neurometabolic disorders like Alzheimer disease and aging. Here we show that absence of presenilin 1 (PS1) results in dramatic decrease (>95%) of neuronal EGFR and that PS1-null (PS1(-/-)) brains have reduced amounts of this receptor. PS1(-/-) cortical neurons contain little EGFR and show no epidermal growth factor-induced survival signaling or protection against excitotoxicity, but exogenous EGFR rescues both functions even in absence of PS1. EGFR mRNA is greatly reduced (>95%) in PS1(-/-) neurons, and PS1(-/-) brains contain decreased amounts of this mRNA, although PS1 affects the stability of neither EGFR nor its mRNA. Exogenous PS1 increases neuronal EGFR mRNA, while down-regulation of PS1 decreases this mRNA. These effects are neuron specific, as PS1 affects the EGFR of neither glial nor fibroblast cells. In addition, PS1 controls EGFR through novel mechanisms shared with neither gamma-secretase nor PS2. Our data reveal that PS1 functions as a positive transcriptional regulator of neuronal EGFR controlling its expression in a cell-specific manner. Severe downregulation of EGFR may contribute to developmental abnormalities and lethal phenotype found in PS1, but not PS2, null mice. Furthermore, PS1 may affect neuroprotection and Alzheimer disease by controlling survival signaling of neuronal EGFR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据