4.7 Article

A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation

期刊

GIGASCIENCE
卷 6, 期 7, 页码 1-30

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gigascience/gix040

关键词

Wine; metagenomics; phylotyping; yeast diversity

资金

  1. Australian Government
  2. University of New South Wales Science Leveraging Fun
  3. Australian grape growers and winemakers

向作者/读者索取更多资源

Background Wine is a complex beverage, comprising hundreds of metabolites produced through the action of yeasts and bacteria in fermenting grape must. Commercially, there is now a growing trend away from using wine yeast (Saccharomyces) starter cultures, towards the historic practice of uninoculated or wild fermentation, where the yeasts and bacteria associated with the grapes and/or winery perform the fermentation. It is the varied metabolic contributions of these numerous non-Saccharomyces species that are thought to impart complexity and desirable taste and aroma attributes to wild ferments in comparison to their inoculated counterparts. Results To map the microflora of spontaneous fermentation, metagenomic techniques were employed to characterize and monitor the progression of fungal species in five different wild fermentations. Both amplicon-based ribosomal DNA internal transcribed spacer )ITS) phylotyping and shotgun metagenomics were used to assess community structure across different stages of fermentation. While providing a sensitive and highly accurate means of characterizing the wine microbiome, the shotgun metagenomic data also uncovered a significant over-abundance bias in the ITS phylotyping abundance estimations for the common non-Saccharomyces wine yeast genus Metschnikowia. Conclusions By identifying biases such as that observed for Metschnikowia, abundance mesurements from future ITS-phylotyping datasets can corrected to provide more accurate species representation. Ulitmtaely, as more shotgun metagenomic and single-strain de novo assemblies for key wine species become available, the accuracy of both ITS-amplicon and shotgun studies will greatly increase, providing a powerful methodology for deciphering the influence of the microbial community on the wine flavor and aroma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据