4.6 Article

Role of a non-ionic surfactant in direct electron transfer-type bioelectrocatalysis by fructose dehydrogenase

期刊

ELECTROCHIMICA ACTA
卷 152, 期 -, 页码 19-24

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2014.11.113

关键词

fructose dehydrogenase; self-assembled monolayer; surfactant layer; bioelectrocatalysis; direct electron transfer

资金

  1. [26-1450]
  2. Grants-in-Aid for Scientific Research [14J01450] Funding Source: KAKEN

向作者/读者索取更多资源

A heterotrimeric membrane-bound fructose dehydrogenase (FDH) from Gluconobacter japonicus NBRC3260 contains FAD in subunit I and three heme C moieties in subunit II as the redox centers, and is one of the direct electron transfer (DET)-type redox enzymes. FDH-catalyzed current density of fructose oxidation at hydrophilic mercaptoethanol (MEtOH)-modified Au electrode is much larger than that at hydrophobic mercaptoethane (MEtn)-modified Au electrode. Addition of a non-ionic surfactant Triton (R) X-100 (1%) completely quenches the catalytic current at the MEtn-modified Au electrode, while only small competitive effect is observed at the MEtOH-modified Au electrode. Quartz crystal microbalance measurements support the adsorption of FDH and Triton (R) X-100 on both of the modified electrodes. We propose a model to explain the phenomenon as follows. The surfactant forms a monolayer on the hydrophobic MEtn-modified electrode with strong hydrophobic interaction, and FDH adsorbs on the surface of the surfactant monolayer. The monolayer inhibits the electron transfer from FDH to the electrode. On the other hand, the surfactant forms a bilayer on the hydrophilic MEtOH-modified electrode. The interaction between the surfactant bilayer and the hydrophilic electrode is relatively weak so that FDH replaces the surfactant and is embedded in the bilayer to communicate electrochemically with the hydrophilic electrode. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据