4.6 Article

Inhibition of Direct Electrolytic Ammonia Oxidation Due to a Change in Local pH

期刊

ELECTROCHIMICA ACTA
卷 165, 期 -, 页码 348-355

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2015.02.162

关键词

Iridium dioxide; low alkalinity; water treatment; Nernstian diffusion layer; acid-base equilibrium

资金

  1. Electron Microscopy Center at Empa (Swiss Federal Institute for Materials Science and Technology, Duebendorf, Switzerland)
  2. Bill and Melinda Gates Foundation [OPP1011603]
  3. Bill and Melinda Gates Foundation [OPP1011603] Funding Source: Bill and Melinda Gates Foundation

向作者/读者索取更多资源

Electrochemical ammonia oxidation has gained a lot of attention recently as an efficient method for ammonia removal from wastewater, for the use in ammonia-based fuel cells and the production of high purity hydrogen. Thermally decomposed iridium oxide films (TDIROF) have been shown to be catalytically active for direct ammonia oxidation in aqueous solutions if NH3 is present. However, the process was reported to be rapidly inhibited on TDIROF. Herein, we show that this fast inhibition of direct ammonia oxidation does not result from surface poisoning by adsorbed elemental nitrogen (N-ads). Instead, we propose that direct ammonia oxidation and oxygen evolution can lead to a drop of the local pH at the electrode resulting in a low availability of the actual reactant, NH3. The hypothesis was tested with cyclic voltammetry (CV) experiments on stagnant and rotating disk electrodes (RDE). The CV experiments on the stagnant electrode revealed that the decrease of the ammonia oxidation peaks was considerably reduced by introducing an idle phase at open circuit potential between subsequent scans. Furthermore, the polarization of the TDIROF electrode into the hydrogen evolution region (HER) resulted in increased ammonia oxidation peaks in the following anodic scans which can be explained with an increased local pH after the consumption of protons in the HER. On the RDE, the ammonia oxidation peaks did not decrease in immediately consecutive scans. These findings would not be expected if surface poisoning was responsible for the fast inhibition but they are in good agreement with the proposed mechanism of pH induced limitation by the reactant, NH3. The plausibility of the mechanism was also supported by our numerical simulations of the processes in the Nernstian diffusion layer. The knowledge about this inhibition mechanism of direct ammonia oxidation is especially important for the design of electrochemical cells for wastewater treatment. The mechanism is not only valid for TDIROF but also for other electrodes because it is independent of the electrode material. (C) 2015 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据