4.6 Article

THE INFLUENCE OF INTERCALATED IONS ON CYCLIC STABILITY OF V2O5/GRAPHITE COMPOSITE IN AQUEOUS ELECTROLYTIC SOLUTIONS: EXPERIMENTAL AND THEORETICAL APPROACH

期刊

ELECTROCHIMICA ACTA
卷 176, 期 -, 页码 130-140

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2015.07.004

关键词

aqueous batteries; composite electrode; DFT; intercalation kinetics; V2O5 xerogel

资金

  1. Ministry of Education, Science and Technological Development of Republic Serbia [III 45014]
  2. bilateral project Transition metal oxides as electrode materials for lithium ion batteries with Portuguese Foundation for Science and Technology

向作者/读者索取更多资源

An amorphous V2O5 xerogel/graphite composite was synthesized and subjected to electrochemical characterization by cyclic voltammetry, chronopotentiometry and impedance measurements in aqueous LiNO3, NaNO3, KNO3 and Mg(NO3)(2) solutions. The kinetics of cyclic intercalation/deintercalation reactions, and the dependence of coulombic capacity on cycle number were examined. The capacity retention depended on the type of inserted ions and decreased in the following order: Mg2+ > Li+ > Na+ > K+. By ultraviolet/visible (UV/VIS) spectroscopy the concentration of dissolved vanadium oxide was determined and correlated with the capacity fade in various electrolyte solutions. By means of Density Functional Theory calculation (DFT), the bond strength between vanadium and triple coordinated oxygen in V2O5 was found to be responsible for the differences in its solubility in various aqueous solutions. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

The Application of Alumina for Electroanalytical Determination of Gallic Acid

Tatjana B. Novakovic, Stefan M. Pavlovic, Maja C. Pagnacco, Predrag T. Bankovic, Zorica D. Mojovic

Summary: A novel and simple electrochemical sensor for the determination of gallic acid was developed using alumina-modified carbon paste electrode. The performance of the sensor was evaluated by cyclic voltammetry and square-wave voltammetry techniques, demonstrating an irreversible diffusion-controlled oxidation of gallic acid. The sensor exhibited a linear relationship between peak current and concentration in the range of 1.4 to 115 μM, with a detection limit of 0.8 μM. The ability of the sensor to detect gallic acid in wine samples was successfully validated.

ELECTROCATALYSIS (2023)

Article Electrochemistry

Galvanic displacement of Co with Rh boosts hydrogen and oxygen evolution reactions in alkaline media

Bojana Nedic Vasiljevic, Aleksandar Z. Z. Jovanovic, Slavko V. V. Mentus, Natalia V. V. Skorodumova, Igor A. A. Pasti

Summary: Surface modification with rhodium through galvanic displacement significantly improves the catalytic activity of cobalt for hydrogen and oxygen evolution reactions in alkaline media. The overpotential for hydrogen and oxygen generation is reduced by 0.16 V and 0.06 V, respectively, after only 20 seconds of galvanic displacement. Density Functional Theory calculations indicate that the reactivity of the Rh-modified Co(0001) surface is different from that of the clean Co(0001) surface.

JOURNAL OF SOLID STATE ELECTROCHEMISTRY (2023)

Article Chemistry, Physical

Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity

Marjetka Savic, Aleksandra Janosevic Lezaic, Nemanja Gavrilov, Igor Pasti, Bojana Nedic Vasiljevic, Jugoslav Krstic, Gordana Ciric-Marjanovic

Summary: Composites of N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO (C-(MOF-5/PANI)) were synthesized by the carbonization of MOF-5/PANI composites. These composites were comprehensively characterized and exhibited high S-BET, electrical conductivity, and specific capacitance. Acid etching treatment further improved the surface area and capacitance, making them promising electrode materials for supercapacitors.

MATERIALS (2023)

Article Chemistry, Physical

Redrawing HER Volcano with Interfacial Processes-The Role of Hydrogen Spillover in Boosting H2 Evolution in Alkaline Media

Sanjin J. Gutic, Dino Metarapi, Aleksandar Z. Jovanovic, Goitom K. Gebremariam, Ana S. Dobrota, Bojana Nedic Vasiljevic, Igor A. Pasti

Summary: In order to efficiently replace fossil fuels and address the growing energy crisis, hydrogen production has become a focus. This study utilized Kinetic Monte Carlo simulations to demonstrate that hydrogen evolution reaction (HER) can be enhanced by hydrogen spillover to the support under certain conditions. Based on these findings, a series of reduced graphene-oxide-supported catalysts were synthesized and compared with pure metals for HER activity in alkaline media. The results showed that the support had a negative effect on Ag, Au, and Zn, but enhanced HER activity for Pt, Pd, Fe, Co, and Ni. The study provides insights into metal-support interface engineering for effective HER catalysts and guidelines for selecting novel catalyst-support combinations for electrocatalytic hydrogen production.

CATALYSTS (2023)

Article Food Science & Technology

Layer-by-Layer Deposited Multi-Modal PDAC/rGO Composite-Based Sensors

Ammar Al-Hamry, Tianqi Lu, Jing Bai, Anurag Adiraju, Tharun K. Ega, Igor A. Pasti, Olfa Kanoun

Summary: Different environmental parameters and contaminations during food processing and storage can lead to food spoilage and the loss of nutritional value. Therefore, developing reliable and cost-effective sensor devices for precise monitoring is crucial. This paper demonstrates the effectiveness of Poly-(diallyl-dimethyl ammonium chloride)/reduced Graphene oxide (PDAC/rGO) films for monitoring temperature, relative humidity, volatile organic compounds, and detecting the presence of pesticides.
Article Nanoscience & Nanotechnology

Activation of Osmium by the Surface Effects of Hydrogenated TiO2 Nanotube Arrays for Enhanced Hydrogen Evolution Reaction Performance

Mila Krstajic N. Pajic, Ana S. Dobrota, Anca Mazare, Sladana Durdic, Imgon Hwang, Natalia V. Skorodumova, Dragan Manojlovic, Rastko Vasilic, Igor A. Pasti, Patrik Schmuki, Uros Lacnjevac

Summary: This study reveals that the surface effects of hydrogenated TiO2 nanotube arrays can convert Os, an unexplored platinum group metal, into a highly active electrocatalyst for the hydrogen evolution reaction (HER). The optimized Os@TNT composite exhibits low overpotential and stable performance in acidic medium, offering new possibilities for the fabrication of cost-effective PGM-based catalysts.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Physical

From PET Bottles Waste to N-Doped Graphene as Sustainable Electrocatalyst Support for Direct Liquid Fuel Cells

Noha A. Elessawy, Gordana Backovic, Janesuda Hirunthanawat, Marta Martins, Lazar Rakocevic, Marwa H. Gouda, Arafat Toghan, Mohamed E. Youssef, Biljana Sljukic, Diogo M. F. Santos

Summary: In this study, PET bottle waste was transformed into nitrogen-doped graphene (NG) as a valuable catalyst support, and NG/Pt electrocatalysts were prepared for direct borohydride peroxide fuel cells (DBPFCs). The results show that NG/Pt catalysts display high catalytic activity, and a DBPFC using NG/Pt_1 catalyst achieved a high power density. This research has the potential to lower the cost of fuel cells and boost the usage of electrochemical energy devices.

CATALYSTS (2023)

Article Chemistry, Multidisciplinary

Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites

Ammar Al-Hamry, Tianqi Lu, Haoran Chen, Anurag Adiraju, Salem Nasraoui, Amina Brahem, Danica Bajuk-Bogdanovic, Saddam Weheabby, Igor A. Pasti, Olfa Kanoun

Summary: This study investigates the relative humidity sensor properties of graphene oxide (GO) and graphene oxide/multiwalled nanotubes (GO/MWNTs) composites. Composite sensors were fabricated using direct laser scribing and characterized using various spectroscopies and microscopy techniques. The results show that GO/MWNT-based humidity sensors are more stable and repeatable, and they have faster response/recovery times compared to GO sensors. The introduction of GO/MWNT hybrid and laser direct writing proves to be advantageous in producing stable structures and sensors.

NANOMATERIALS (2023)

Article Food Science & Technology

Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos-Kinetics, Thermodynamics, and Eco-Neurotoxicity

Vedran Milankovic, Tamara Tasic, Milica Pejcic, Igor Pasti, Tamara Lazarevic-Pasti

Summary: Coffee is a popular beverage, but the disposal of spent coffee grounds (SCGs) can harm the environment. This study explored the interaction between SCGs and organophosphate pesticides, specifically malathion and chlorpyrifos. The results showed that SCGs can effectively remove these pesticides from water and fruit extracts without producing toxic byproducts.
Article Food Science & Technology

Application of Viscose-Based Porous Carbon Fibers in Food Processing-Malathion and Chlorpyrifos Removal

Tamara Tasic, Vedran Milankovic, Katarina Batalovic, Stefan Breitenbach, Christoph Unterweger, Christian Fuerst, Igor A. Pasti, Tamara Lazarevic-Pasti

Summary: This study shows that carefully tuned viscose-derived activated carbon fibers can efficiently remove pesticides from liquid samples, even in complex matrices. The selected materials are not affected by complex matrices of real samples and can be regenerated multiple times without performance losses. Adsorptive removal of food contaminants can effectively improve food safety and quality, unlike other methods that negatively affect the nutritional value of food products. Data-based models can guide the synthesis of novel adsorbents for desired applications in food processing.
Article Chemistry, Physical

Kinetics of Hydrogen Evolution Reaction on Monometallic Bulk Electrodes in Various Electrolytic Solutions

Goitom K. Gebremariam, Aleksandar Z. Jovanovic, Igor A. Pasti

Summary: This study evaluates the HER kinetic parameters of different metals in various electrolytes, showing that the shape of HER volcano curves remains largely unchanged in different electrolytes. The presence of surface oxide can have both positive and negative effects on HER kinetics, depending on the metal-electrolyte combination. The study also provides a comprehensive overview of HER kinetic data from diverse literature sources, offering practical insights for the development of new catalytic materials and optimization of electrolyte formulations for enhancing HER.

CATALYSTS (2023)

Article Chemistry, Multidisciplinary

Hydrogen Evolution Reaction on Ultra-Smooth Sputtered Nanocrystalline Ni Thin Films in Alkaline Media-From Intrinsic Activity to the Effects of Surface Oxidation

Daniela Neumueller, Lidija D. Rafailovic, Aleksandar Z. Jovanovic, Natalia V. Skorodumova, Igor A. Pasti, Alice Lassnig, Thomas Griesser, Christoph Gammer, Juergen Eckert

Summary: Highly efficient non-noble metal catalysts are crucial for hydrogen generation through electrolysis, and the synthesis of catalytic heterostructures containing established Ni with surface NiO, Ni(OH)(2), and NiOOH domains has shown promising results. This study investigates the intrinsic catalytic activity of pure Ni and the impact of partial electrochemical oxidation of magnetron sputter-deposited Ni surfaces through various experimental techniques and simulations. The results demonstrate that surface oxidation increases the intrinsic hydrogen evolution reaction (HER) activity of nickel and improves catalyst durability.

NANOMATERIALS (2023)

Review Biochemistry & Molecular Biology

Bipolar Membranes for Direct Borohydride Fuel Cells-A Review

Ines Belhaj, Monica Faria, Biljana Sljukic, Vitor Geraldes, Diogo M. F. Santos

Summary: Direct liquid fuel cells (DLFCs) use liquid fuel instead of hydrogen and have higher energy densities and fewer issues with transportation and storage. The direct borohydride-hydrogen peroxide fuel cell (DBPFC) is a promising technology that uses sodium borohydride (NaBH4) as fuel and hydrogen peroxide (H2O2) as oxidant. Introducing H2O2 as the oxidant increases the cell voltage compared to direct borohydride fuel cells operating on oxygen.

MEMBRANES (2023)

Article Chemistry, Physical

Theoretical analysis of electrochromism of Ni-deficient nickel oxide - from bulk to surfaces

Igor A. Pasti, Ana S. Dobrota, Dmitri B. Migas, Boerje Johansson, Natalia V. Skorodumova

Summary: The development of new electrochromic materials and devices, such as smart windows, has a significant impact on energy efficiency in modern society. Nickel oxide is a crucial material in this technology, and its Ni-deficient form exhibits anodic electrochromism. By using DFT+U calculations, researchers have shown that the generation of nickel vacancies leads to the formation of hole polarons localized at nearby oxygen sites. These hole polarons can be filled by Li insertion or electron injection, resulting in a transition from an oxidized (colored) to a reduced (bleached) state. This study suggests a new mechanism for Ni-deficient NiO electrochromism based on the formation and annihilation of hole polarons in oxygen p-states rather than the change in Ni oxidation states (Ni2+/Ni3+ transition).

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2023)

Article Chemistry, Multidisciplinary

Thermal investigation of material derived from the species Apatura iris

Marina simovic Pavlovic, Maja Pagnacco, Dimitrije Mara, Aleksandra Radulovic, Bojana Bokic, Darko Vasiljevic, Branko Kolaric

Summary: This study investigates the natural optical structure of butterfly wings and explores the influence of nanoscale corrugations on material's optical response. Additionally, the study demonstrates the possibility of using holography to monitor dynamics in real time.

JOURNAL OF THE SERBIAN CHEMICAL SOCIETY (2023)

Article Electrochemistry

Recent advances in Bio-mass by electrochemically strategies generated hydrogen gas production: Environmentally sustainable technologies innovation

Abdul Qayoom Mugheri, Shaista Khan, Ali Asghar Sangah, Aijaz Ahmed Bhutto, Muhammad Younis Laghari, Nadeem Ahmed Mugheri, Asif Ali Jamali, Arsalan Ahmed Mugheri, Nagji Sodho, Abdul Waheed Mastoi, Aftab Kandhro

Summary: Green hydrogen has the potential to transition to a pollution-free energy infrastructure. This study proposes a solution to produce hydrogen during the photoelectrochemical process, offering greater stability and control over chemical reactions. Techno-economic assessments show the efficiency and economic feasibility of co-producing value-added chemicals to enhance green hydrogen production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction

Danpeng Cheng, Wuxin Sha, Qigao Han, Shun Tang, Jun Zhong, Jinqiao Du, Jie Tian, Yuan-Cheng Cao

Summary: LiNixCoyMn1-x-yO2 (NCM) is a critical cathode material for lithium-ion batteries in electric vehicles. The aging of cathode/electrolyte interfaces leads to capacity degradation and long-term cycle instability. A novel neural network model called ACGNet is developed to predict electrochemical stability windows of crystals, allowing for high-throughput screening of coating materials. LiPO3 is identified as a promising coating material with high oxidation voltage and low cost, which significantly improves the cycle stability of NCM batteries. This study demonstrates the accuracy and potential of machine learning in battery materials.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Enhanced electrochemical performance of CuO/NiO/rGO for oxygen evolution reaction

P. Mohana, R. Yuvakkumar, G. Ravi, S. Arunmetha

Summary: This study successfully fabricates a non-noble CuO/NiO/rGO nanocomposite and investigates its electrocatalytic performance for oxygen evolution reaction in alkaline environment. The experimental results demonstrate that the electrocatalyst exhibits high activity and good stability, offering a new synthetic approach for sustainable energy production.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Carbon nanofibers implanted porous catalytic metal oxide design as efficient bifunctional electrode host material for lithium-sulfur battery

Qiong Qu, Jing Guo, Hongyu Wang, Kai Zhang, Jingde Li

Summary: In this study, a bifunctional electrode host design consisting of carbon nanofibers implanted ordered porous Co-decorated Al2O3 supported on carbon nanotube film (CNTF) was proposed to address the shuttling effect of lithium polysulfides (LiPSs) and dendrite formation of metal lithium anode in lithium-sulfur (Li-S) batteries. The electrode exhibited excellent conductivity, efficient confinement of LiPSs, and catalytic conversion performance, resulting in high initial capacity and good capacity retention during cycling. As an anode, the electrode showed excellent Li+ diffusion performance and uniform lithium growth behavior, achieving a dendrite-free lithium electrode. The flexible pack cell assembled from these electrodes delivered a specific capacity of 972 mAh g(-1) with good capacity retention.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Spray coating of carbon nanoparticles as an effective and scalable method to enhance the performance of stainless steel anode in microbial electrochemical systems

Hong Zhang, Jin-Peng Yu, Chen Chen, Cheng-Yong Shu, Guang-Yu Xu, Jie Ren, Kai Cui, Wen-Fang Cai, Yun-Hai Wang, Kun Guo

Summary: Spray coating of acetylene black nanoparticles onto stainless steel mesh can enhance its biofilm formation ability and current density, making it a promising electrode material for microbial electrochemical systems. The spray coating method is simple, cost-effective, and suitable for large-size stainless steel electrodes.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical properties of Li-rich ternary cathode material Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase

Binpeng Hou, Jingjin Chen, Li-Hong Zhang, Xiaowen Shi, Zizhong Zhu

Summary: The electrochemical performance of Li1.20Mn0.44Ni0.32Co0.04O2 and its oxygen-deficient phase Li1.20Mn0.44Ni0.32Co0.04O1.83 was studied through first-principles calculations. The results show that the oxygen-deficient phase has a higher theoretical capacity but lower voltage platform and higher chemical activity compared to the pristine phase.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Post-mortem analysis of the Li-ion battery with charge/discharge deterioration in high- and low-temperature environments

Yating Du, Sayoko Shironita, Daisuke Asakura, Eiji Hosono, Yoshitsugu Sone, Yugo Miseki, Eiichi Kobayashi, Minoru Umeda

Summary: This study investigates the effect of high- and low-temperature environments on the charge-discharge performance of a Li-ion battery. The deterioration mechanisms of the battery at different temperatures are analyzed through various characterization techniques. The results indicate that the battery performance deteriorates more significantly at a low-temperature environment of 5 degrees C compared to higher temperatures. The understanding of the deterioration mechanisms can contribute to the development of safer battery usage methods.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A Co3O4-x/Co nanocomposite with synergistically enhanced electrochemical activity for reduction of nitrite to ammonia

Si-Si Shi, Zhi-Xiang Yuan, Fei Zhang, Ping Chen

Summary: In this study, a new nano-electrocatalyst was prepared, which exhibited superior electrocatalytic activity for the reduction of NO2- to ammonia in a neutral electrolyte, potentially due to the synergistic enhancement between Co3O4-x and Co.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Facile fabrication of NaOH nanorods on pencil graphite electrode for simultaneous electrochemical detection of natural antioxidants by deep eutectic solvent

Berna Dalkiran, Havva Bekirog

Summary: This study reports the use of deep eutectic solvents (DES) based on ethylene glycol and urea as low-cost and green electrolytes for enhancing electrochemical detection of natural antioxidants. The study successfully developed a disposable and effective electrochemical sensing platform for simultaneous determination of ascorbic acid (AA) and gallic acid (GA) using NaOH nanorods on a pencil graphite electrode. The proposed electrode showed improved analytical performance, with higher peak currents and shifted oxidation potentials in DES compared to BR buffer medium.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

A three-dimensional fibrous tungsten-oxide/carbon composite derived from natural cellulose substance as an anodic material for lithium-ion batteries

Sijun Ren, Jianguo Huang

Summary: In this study, a novel bio-inspired nanofibrous WO3/carbon composite was synthesized using a facile hydrothermal method. The three-dimensional network structure of the composite alleviated the volume expansion of WO3 nanorods and enhanced the charge-transport kinetics. The optimized composite exhibited superior lithium storage properties.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Stabilizing the dissolution kinetics by interstitial Zn cations in CoMoO4 for oxygen evolution reaction at high potential

Zhilong Zheng, Yu Chen, Hongxia Yin, Hengbo Xiao, Xiangji Zhou, Zhiwen Li, Ximin Li, Jin Chen, Songliu Yuan, Junjie Guo, Haibin Yu, Zhen Zhang, Lihua Qian

Summary: This study found that interstitial Zn cations in CoMoO4 can modulate the dissolution kinetics of Mo cations and improve the OER performance. The interstitial Zn cations can prevent the dissolution of Co cations at high potential, enhancing the durability of the catalyst.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Molecular insights on optimizing nanoporous carbon-based supercapacitors with various electrolytes

Xiaobo Lin, Shern R. Tee, Debra J. Searles, Peter T. Cummings

Summary: Molecular dynamics simulations using the constant potential method were used to investigate the charging dynamics and charge storage of supercapacitors. The simulations revealed that the water-in-salt electrolyte exhibited the highest charge storage and significantly higher capacitance on the negative electrode. The varying contributions of different electrode regions to supercapacitor performance were also demonstrated.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Interaction between bilirubin oxidase and Au nanoparticles distributed over dimpled titanium foil towards oxygen reduction reaction

Wiktoria Lipinska, Vita Saska, Katarzyna Siuzdak, Jakub Karczewski, Karol Zaleski, Emerson Coy, Anne de Poulpiquet, Ievgen Mazurenko, Elisabeth Lojou

Summary: The spatial distribution of enzymes on electrodes is important for bioelectrocatalysis. In this study, controlled spatial distribution of gold nanoparticles on Ti nanodimples was achieved. The efficiency of enzymatic O2 reduction was found to be influenced by the size of the gold nanoparticles and their colocalization with TiO2. The highest stability of enzymatic current was observed with the largest gold nanoparticles.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Electrochemical supercapacitor and water splitting electrocatalysis applications of self-grown amorphous Ni(OH)2 nanosponge-balls

Tariq M. Al-Hejri, Zeenat A. Shaikh, Ahmed H. Al-Naggar, Siddheshwar D. Raut, Tabassum Siddiqui, Hamdan M. Danamah, Vijaykumar V. Jadhav, Abdullah M. Al-Enizi, Rajaram S. Mane

Summary: This study explores a promising self-growth approach for the synthesis of nickel hydroxide (Ni(OH)2) nanosponge-balls on the surface of a nickel-foam (NiF) electrode. The modified NiF electrode, named Ni(OH)2@NiF, shows distinctive nanosponge-ball morphology and demonstrates excellent energy storage capability and electrocatalytic performance in both hydrogen and oxygen evolution reactions.

ELECTROCHIMICA ACTA (2024)

Article Electrochemistry

Versatile mixed ionic-electronic conducting binders for high-power, high-energy batteries

Rafael Del Olmo, Gregorio Guzman-Gonzalez, Oihane Sanz, Maria Forsyth, Nerea Casado

Summary: The use of Lithium-Ion Batteries (LIBs) is becoming increasingly extensive, and it is important to optimize the devices to achieve their maximum practical specific capacity. In this study, mixed ionic-electronic conducting (MIEC) binders based on PEDOT:PSS and PEDOT: PDADMA-TFSI were developed for Li-ion cathodes, and their performance was compared with conventional formulations. The influence of electrode formulations, including the addition of conducting carbon and an Organic Ionic Plastic Cristal (OIPC), was also analyzed. The proposed binders showed improved performance compared to conventional formulations with different electrolyte types and active materials.

ELECTROCHIMICA ACTA (2024)