4.6 Article Proceedings Paper

Functional binders as graphite exfoliation suppressants in aggressive electrolytes for lithium-ion batteries

期刊

ELECTROCHIMICA ACTA
卷 175, 期 -, 页码 141-150

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2015.03.072

关键词

Binder; graphite exfoliation; CMC; propylene carbonate; SEI

资金

  1. Swedish Research Council [2012-3837]

向作者/读者索取更多资源

A comparative study of various electrode binders for graphite electrodes was conducted in a carbonate-based electrolyte with a high content of propylene carbonate (PC) as a means to evaluate anode degradation in presence of different binders. Because of its direct contact with the active material, a binder can be interpreted as an interfacial layer and as a local part of the electrolyte, the properties of which greatly depend on the interaction with the liquid electrolyte. In this work we demonstrate how a carefully chosen binder can create a specific surface environment that can protect graphite from exfoliation when the binder exhibits poor solubility in the electrolyte solvent and good surface adhesion to the active material. The exceptional stability of graphite electrodes containing poly(acrylic acid) sodium salt (PAA-Na) and carboxymethyl cellulose sodium salt (CMC-Na), respectively, in a PC-rich electrolyte is explained through the understanding of binder swelling and functionality. Interfacial resistances and electrochemical stability were investigated with impedance spectroscopy and galvanostatic cycling. Electrode morphologies and distributions of material were analysed with SEM and EDX. Evidence is presented that the surface selectivity increases with concentration of functional groups and polymer flexibility. Therefore only the less selective, stiff polymer with less functional groups, CMC-Na, provides sufficient protection at low binder contents. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据