4.7 Article

Friction welding of selective laser melted Ti6Al4V parts

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2017.08.004

关键词

Selective laser melting; Ti-based alloys; Friction welding; Tensile behavior

向作者/读者索取更多资源

Ti6Al4V alloy samples fabricated by selective laser melting (SLM) were subjected to solid-state welding friction welding (FW). The welded alloy exhibits a alpha'-martensitic microstructure in the form of platelets with dimensions in the submicron regime. The base alloy has a relatively coarser microstructure consisting of both alpha' and beta phases, as compared to the as-prepared SLM microstructure (single-phase cemartensite). Hardness measurements revealed an increase of hardness in the weld zone due to the refined alpha'platelets. A marginal drop in hardness along the base alloy is observed that may be attributed to the imposed thermal cycle during the FW process. Tensile tests reveal an improved ductility for the FW samples at the expense of a marginal drop in strength, compared to the as-prepared SLM samples. The present work illustrates the ability of solid-state welding processes for successfully joining SLM parts and in improving, the ductility of the SLM parts and offers the opportunity to work with the additive manufacturing processes without size limits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Additive Manufacturing of CoCrFeMnNi High-Entropy Alloy/AISI 316L Stainless Steel Bimetallic Structures

Rathinavelu Sokkalingam, Zhao Chao, Katakam Sivaprasad, Veerappan Muthupandi, Jayamani Jayaraj, Parthiban Ramasamy, Juergen Eckert, Konda Gokuldoss Prashanth

Summary: CoCrFeMnNi high-entropy alloy/AISI 316L stainless steel bimetal was fabricated using SLM, showing enhanced hardness and tensile strength due to the composition and structure advantages. However, the presence of defects and higher susceptibility to pitting corrosion in CoCrFeMnNi-HEA make it more prone to corrosion attack in corrosive environments.

ADVANCED ENGINEERING MATERIALS (2023)

Article Materials Science, Multidisciplinary

Influence of Hatch Strategy on Crystallographic Texture Evolution, Mechanical Anisotropy of Laser Beam Powder Bed Fused S316L Steel

Sabine C. Bodner, Kostyantin Hlushko, Kevin Kutlesa, Juraj Todt, Oliver Renk, Michael Meindlhumer, Florian Resch, Marc-Andre Nielsen, Jozef Keckes, Jurgen Eckert

Summary: The correlations between process conditions, microstructure, and mechanical properties of additively manufactured components are explored in this study. The results show that the applied hatch strategy has a significant impact on the microstructure and mechanical properties of the samples, especially the anisotropy observed in the plane perpendicular to the build direction.

ADVANCED ENGINEERING MATERIALS (2023)

Article Materials Science, Multidisciplinary

High-Entropy Alloy-Induced Metallic Glass Transformation: Challenges Posed by in situ Alloying via Additive Manufacturing

Sepide Hadibeik, Florian Spieckermann, Martin Nosko, Farzad Khodabakhshi, Mahmoud Heydarzadeh Sohi, Juergen Eckert

Summary: A novel approach for fabricating bulk metallic glass using additive manufacturing has been studied, however, there are challenges, such as unmelted powder and compositional deviation, that need further investigation to optimize the process parameters.

ADVANCED ENGINEERING MATERIALS (2023)

Article Materials Science, Multidisciplinary

Dislocation entangled mechanisms in cu-graphene nanocomposite fabricated by high-pressure sintering

Nidhi Khobragade, Tapabrata Maity, Anna Swiderska-Sroda, Gierlotka Stanislaw, Witold Lojkowski, Pokula Narendra Babu, Snehanshu Pal, Debdas Roy

Summary: Graphene reinforced Cu-based nanocomposite (Cu-Gr) synthesized under high-pressure forming (-8 GPa) at 300 degrees C exhibited 96% relative density and an 84% improvement in electrical conductivity (IACS), as well as increased hardness and Young's modulus up to -94 GPa. The structure and defects evolution were investigated using nanoindentation and verified computationally. Molecular dynamics simulations showed consistent results with experiments, revealing that grain growth and grain boundary sliding (GBS) played a dominant role in deformation mechanisms involving dislocation motion, stacking faults (SFs), and twin boundary (TBs) formation, as well as matrix failure through grain growth and GBS with increased load, leading to subsequent bending processes.

MATERIALS CHARACTERIZATION (2023)

Article Materials Science, Multidisciplinary

Enhanced mechanical performance of gradient-structured CoCrFeMnNi high-entropy alloys induced by industrial shot-blasting

Ming-Zhi Zhang, Kun Zhang, Kai-Kai Song, Xiao-Yu Zou, Wei-Dong Song, Ke-Feng Li, Li-Na Hu, Ze-Qun Zhang, Juergen Eckert

Summary: In this study, CoCrFeMnNi high-entropy alloys with a surface gradient nanostructure were produced using industrial shot blasting, which significantly improved their mechanical properties. The severely plastically deformed surface layer had a multi-scale hierarchical structure and increased in depth with shot-blasting time. The microhardness and tensile strength of the alloy were significantly higher after shot-blasting. The improved strain hardening and prevention of early necking in the gradient-nanostructured surface layer contributed to its high toughness.

RARE METALS (2023)

Article Chemistry, Physical

Can Severe Plastic Deformation Tune Nanocrystallization in Fe-Based Metallic Glasses?

Monika Antoni, Florian Spieckermann, Niklas Plutta, Christoph Gammer, Marlene Kapp, Parthiban Ramasamy, Christian Polak, Reinhard Pippan, Michael J. J. Zehetbauer, Juergen Eckert

Summary: The effects of severe plastic deformation (SPD) by means of high-pressure torsion (HPT) on Fe73.9Cu1Nb3Si15.5B6.6 and Fe81.2Co4Si0.5B9.5P4Cu0.8 iron-based metallic glasses were compared. HPT processing extended the consolidation and deformation ranges for Fe73.9Cu1Nb3Si15.5B6.6, and achieved consolidation and deformation with minimum cracks for Fe81.2Co4Si0.5B9.5P4Cu0.8 for the first time. Various analyses revealed that Fe81.2Co4Si0.5B9.5P4Cu0.8 exhibited HPT-induced crystallization phenomena, while Fe73.9Cu1Nb3Si15.5B6.6 did not crystallize even at high HPT-deformation degrees.

MATERIALS (2023)

Editorial Material Chemistry, Multidisciplinary

Special Issue Novel Structural and Functional Material Properties Enabled by Nanocomposite Design

Juergen Eckert, Daniel Kiener

NANOMATERIALS (2023)

Article Engineering, Manufacturing

Heterogeneous microstructure and mechanical behaviour of Al-8.3Fe-1.3V-1.8Si alloy produced by laser powder bed fusion

S. J. Yu, P. Wang, H. C. Li, R. Setchi, M. W. Wu, Z. Y. Liu, Z. W. Chen, S. Waqar, L. C. Zhang

Summary: The relationship between processing parameters, microstructure, and mechanical properties of Al-8.3Fe-1.3V-1.8Si alloy processed by laser powder bed fusion was investigated. Two alloys with different parameters were studied, showing different melt pool shapes and sizes. The microstructure of both alloys exhibited a lack of secondary phase in the melt pool and a nano-sized phase at the melt pool boundary. The difference in solid-solution strengthening and Orowan strengthening in the melt pool and melt pool boundary influenced the compressive yield strength and crack behavior of the alloys.

VIRTUAL AND PHYSICAL PROTOTYPING (2023)

Article Chemistry, Physical

Iron oxide - poly(m-anthranilic acid)-poly(e-caprolactone) electrospun composite nanofibers: fabrication and properties

Keziban Huner, Baran Sarac, Eray Yuece, Amir Rezvan, Matej Micusik, Maria Omastova, Juergen Eckert, A. Sezai Sarac

Summary: The incorporation of iron and carboxylic acid-functionalized polyaniline into polymeric polycaprolactone structures enhances the electron-donating ability and conductivity of the compound, making it suitable for electrochemical immunosensors.

MOLECULAR SYSTEMS DESIGN & ENGINEERING (2023)

Article Engineering, Mechanical

Molecular dynamics study of shock-induced deformation phenomena and spallation failure in Ni-based single crystal superalloys

Bin Chen, Yunli Li, Daniel Sopu, Juergen Eckert, Wenping Wu

Summary: The shock-induced dynamic mechanical behavior and spallation failure of Ni-based single crystal superalloys are studied using non-equilibrium molecular dynamic simulations. Two modes of classical spallation and micro-spallation are observed during the spallation failure. The deformation mechanism is dominated by slip and drag of dislocations at low shock velocities, while complex phase transitions from FCC to BCC or disordered structures occur at higher velocities, leading to a decrease in spallation strength. The presence of voids significantly lowers the spallation strength, and the reduction in strength is proportional to the radius of the voids.

INTERNATIONAL JOURNAL OF PLASTICITY (2023)

Article Materials Science, Multidisciplinary

Accelerating matrix/boundary precipitations to explore high-strength and high-ductile Co34Cr32Ni27Al3.5Ti3.5 multicomponent alloys through hot extrusion and annealing

Xiaoming Liu, Zongde Kou, Ruitao Qu, Weidong Song, Yijia Gu, Changshan Zhou, Qingwei Gao, Jiyao Zhang, Chongde Cao, Kaikai Song, Vladislav Zadorozhnyy, Zequn Zhang, Juergen Eckert

Summary: This study utilizes high-temperature extrusion and annealing to optimize the microstructures and mechanical properties of the Co34Cr32Ni27Al3.5Ti3.5 multicomponent alloy. Hot extrusion reduces grain sizes and promotes the precipitation of nanoparticles inside the FCC matrix and grain boundaries. Subsequent annealing regulates the microstructures and enhances the mechanical properties.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Mechanical behavior of CuZrAl metallic glass scaffolds fabricated by selective laser melting

Ming-Wei Wu, Kai Ni, Yang Lei, Xin-Xing Xiong, Yi-Ting Chuang, Quiao-En Lin, Pei Wang, Parthiban Ramasamy, Juergen Eckert

Summary: Selective laser melting (SLM) was utilized to produce CuZrAl metallic glass (MG) scaffolds with combined lattice structures of body-centered cubic and face-centered cubic (F2BCC), and the effects of lattice structures on mechanical behavior were investigated. The results revealed that curved struts remarkably enhanced compressive ductility by 122% and energy absorption by 106%. The presence of curved struts effectively prevented catastrophic shear fracture and delayed fracture occurrence due to the release of strain concentrations. This study demonstrates the potential of improving the ductility and toughness of SLM MG components through appropriate lattice structure design.

MATERIALS LETTERS (2023)

Article Materials Science, Multidisciplinary

Strong and ductile titanium via additive manufacturing under a reactive atmosphere

Yangping Dong, Dawei Wang, Qizhen Li, Xiaoping Luo, Jian Zhang, Konda Gokuldoss Prashanth, Pei Wang, Jurgen Eckert, Lutz Madler, Ilya V. Okulov, Ming Yan

Summary: In this study, strong and ductile pure Ti was synthesized via a reactive additive manufacturing method. The Ti was processed using laser powder bed fusion in an environment containing a mixture of argon and nitrogen gases. The presence of a nitrogen solid solution led to the formation of high-strength pure Ti with excellent uniform elongation, due to strong work hardening caused by the interaction of interstitial elements and submicrostructure. This reactive additive manufacturing approach opens up possibilities for in-situ strengthening of pure metals and alloys.

MATERIALS TODAY ADVANCES (2023)

Article Materials Science, Multidisciplinary

Solving the problem of solidification cracking during additive manufacturing of CrMnFeCoNi high-entropy alloys through addition of Cr3C2 particles to enhance microstructure and properties

Xintian Wang, Zhiyong Ji, Robert O. Ritchie, Ilya Okulov, Juergen Eckert, Chunlei Qiu

Summary: In this study, TiAl and Cr3C2 particles were added to a CrMnFeCoNi alloy to improve its processibility and mechanical properties. The addition of TiAl particles resulted in the formation of cracks, but the further addition of Cr3C2 particles helped suppress hot cracking. The presence of long-range ordered domains and precipitates contributed to the improved strength of the dual-particle containing alloy.

MATERIALS TODAY ADVANCES (2023)

Article Chemistry, Physical

Styrene-butadiene-styrene-based stretchable electrospun nanofibers by carbon nanotube inclusion

Baran Sarac, Remzi Gurbuz, Matej Micusik, Maria Omastova, Amir Rezvan, Eray Yuece, Lixia Xi, Juergen Eckert, Ali Ozcan, A. Sezai Sarac

Summary: This study focuses on the synthesis and properties comparison of a novel organic composite nanofiber material consisting of styrene-butadiene-styrene (SBS) copolymer blended with polystyrene (PStyr) and carbon nanotubes (CNTs). The addition of CNTs retards the crystallization process and decreases the absorbance of both SBS/PStyr and PStyr/PBu in Fourier transform infrared spectroscopy. The interaction of CNTs with the blend is limited in samples with SBS, as observed in Raman spectroscopy.

MOLECULAR SYSTEMS DESIGN & ENGINEERING (2023)

Article Nanoscience & Nanotechnology

The role of parent austenite grain size on the variant selection and intervariant boundary network in a lath martensitic steel

Ahmad Mirzaei, Peter D. Hodgson, Xiang Ma, Vanessa K. Peterson, Ehsan Farabi, Gregory S. Rohrer, Hossein Beladi

Summary: This study investigated the influence of parent austenite grain refinement on the intervariant boundary network in a lath martensitic steel. It found that refining the parent austenite grain led to a decrease in the fraction of certain boundaries in the martensite and an increase in the connectivity of low energy boundaries, ultimately improving the impact toughness.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

The interdependence of the thermal and mechanical cycling behaviour in Ti2448 (Ti-24Nb-4Zr-8Sn, wt%)

N. L. Church, C. E. P. Talbot, L. D. Connor, S. Michalik, N. G. Jones

Summary: Metastable beta Ti alloys based on the Ti-Nb system have attracted attention due to their unique properties. However, the unstable cyclic behavior of these alloys has hindered their widespread industrial use. Recent studies have shown that internal stresses, including those from dislocations, may be responsible for this behavior. This study demonstrates that inter-cycle thermal treatments can mitigate the unstable cyclic behavior, providing a significant breakthrough in our understanding of Ti-Nb superelastic materials.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Ultrasonic-assisted soldering of SiC ceramic and aluminum alloy with a commercial inactive Sn3.0Ag0.5Cu solder

Di Zhao, Chenchen Zhao, Ziyang Xiu, Jiuchun Yan

Summary: This study proposes a novel strategy for achieving the bonding of SiC ceramic and Al alloy using ultrasound. The ultrasound promotes the dissolution of Al into the solder, activating the solder and triggering the interfacial reaction between SiC ceramic and solder. With increasing ultrasonic duration, the bonding between SiC and Al transitions from partial to full metallurgical bonding.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of grain orientation and precipitates on the superelasticity of Fe-Ni-Co-Al polycrystalline alloys

Kang Du, Yang Zhang, Guangda Zhao, Tao Huang, Liyuan Liu, Junpeng Li, Xiyu Wang, Zhongwu Zhang

Summary: This paper systematically investigated the evolution of microstructure in Fe-Ni-Co-Al polycrystalline alloys and its effects on mechanical properties. The results revealed that the migration of grain boundaries in different processes is driven by different factors, which impacts the grain orientation and precipitate formation. In the process of directional recrystallization, grains with specific orientations grow in the grain boundary region and form the dominant orientation, while grains with lower migration rate form the minor orientation. The alloy produced through directional recrystallization exhibited good recoverable strain and superelastic strain, while the alloy produced through solid solution treatment showed no evident superelastic behavior.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of thermomechanical processing on compressive mechanical properties of Ti-15Mo additively manufactured by laser metal deposition

Edohamen Awannegbe, Liang Chen, Yue Zhao, Zhijun Qiu, Huijun Li

Summary: This study employed laser metal deposition to additively manufacture Ti-15Mo wt% alloy, and subsequently subjected it to post-fabrication uniaxial thermomechanical processing. The results showed that different zones in the microstructure remained after processing, and deformation mechanisms mainly involved slip and martensite formation. The compressive mechanical properties were found to be dependent on strain rate, with higher flow stress and compressive strength observed at higher strain rates. Grain structure homogenisation was not achieved, leading to anisotropic tensile properties.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Crystallographic texture and the mechanical properties of API 5L X70 pipeline steel designated for an arctic environment

Reza Khatib Zadeh Davani, Enyinnaya George Ohaeri, Sandeep Yadav, Jerzy A. Szpunar, Jing Su, Michael Gaudet, Muhammad Rashid, Muhammad Arafin

Summary: This research aims to investigate the effect of roughing and finishing reductions on crystallographic texture. The results show significant heterogeneity in the centerline region, with higher intensity of certain textures. Drop Weight Tear Test indicates that steel specimens with lower and medium reductions exhibit superior low-temperature impact toughness compared to steel with higher reductions. The electrochemical hydrogen charging experiments confirm the presence of internal hydrogen cracks only in steel with lower and medium reductions.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Effect of Cr content in temperature-dependent mechanical properties and strain hardening of a twinning-induced plasticity steel

Flavio De Barbieri, Denis Jorge-Badiola, Rodrigo Allende, Karem Tello, Alfredo Artigas, Franco Perazzo, Henry Jami, Juan Perez Ipina

Summary: This study examines the effect of Cr additions on the mechanical behavior of TWIP steel at temperatures ranging from 25°C to 350°C. The results indicate that different temperature-dependent strengthening mechanisms, including mechanical twinning, Dynamic Strain Aging, and slip bands, are at play. The stacking fault energy (SFE) influences the percentage of mechanical twinning, which in turn affects the strain hardening rate.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Electron beam welding of L12-nanoparticle-strengthened strong and ductile medium-entropy alloys for cryogenic applications

Hanlin Peng, Siming Huang, Ling Hu, Bingbing Luo, Liejun Li, Ian Baker

Summary: This study explores the weldability, microstructures, and mechanical properties of two L1(2)-nanoparticle-strengthened medium-entropy alloys after electron beam welding (EBW). The results show that strong yet ductile defect-free joints were produced, with larger grain sizes in the fusion zones compared to the heat-affected zones and base materials. Both EBWed MEAs exhibited high yield strengths, high ultimate tensile strengths, and good fracture strains at 77 K. The V-doping improved the cryogenic mechanical properties of the TMT MEA.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Strain rate-dependent tensile deformation behavior and fracture mechanism of Mn-N bearing lean duplex stainless steel

Yongxin Wang, Lei Chen, Lizi Shao, Shuo Hao, Motomichi Koyama, Xingzhou Cai, Xiaocong Ma, Miao Jin

Summary: This study investigated the tensile deformation behavior of an Mn-N bearing lean duplex stainless steel with metastable austenite. The results showed that the strain rate had significant influence on the work hardening, strain-induced martensitic transformation, and fracture mechanism.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Recovery of sheet formability of cold-rolled pure titanium by cryogenic-deformation treatment

Jong Woo Won, Seulbi Lee, Hye-Jeong Choe, Yong-Taek Hyun, Dong Won Lee, Jeong Hun Lee

Summary: Cold-rolled pure titanium showed improved sheet formability after undergoing cryogenic-deformation treatment. This treatment increased the thinning capability of the titanium and suppressed cracking during sheet forming. The formation of twins during deformation contributed to high thinning capability and increased strength through grain refinement and dislocation accumulation.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Rapidly induced homogenization and microstructure control of Cu-15Ni-8Sn alloy by electropulsing treatment

Handong Li, Lin Su, Lijuan Wang, Yanbin Jiang, Jiahui Long, Gaoyong Lin, Zhu Xiao, Yanlin Jia, Zhou Li

Summary: Homogenization heat treatment is a key procedure in controlling the second phase, enhancing composition uniformity, and workability of as-cast Cu-15Ni-8Sn alloy. This study found that electropulsing treatment (EPT) can significantly reduce treatment temperature and time, improve elongation and overall mechanical properties of the alloy.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Study on the regulation of microstructure and mechanical properties of Cu-15Sn-0.3Ti alloy by a novel mechanical-heat-electricity synergistic method

Yuxuan Wang, Juntao Zou, Lixing Sun, Yunfei Bai, Zhe Zhang, Junsheng Cheng, Lin Shi, Dazhuo Song, Yihui Jiang, Zhiwei Zhang

Summary: A novel mechanical-heat-electricity synergistic method was proposed to enhance the mechanical properties of Cu-15Sn-0.3Ti alloy by forming annealing twins (ATs). The combination method of Rotary swaging (RS) and Electric pulse treatment (EPT) successfully induced recrystallization and refinement of the microstructure, leading to a significant increase in the strength of the alloy within a short time.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Ta-induced strengthening of CoCrNi-AlTi medium-entropy alloys via nanoscale heterogeneous coherent precipitate

Zhiyi Ding, Jiangtao Xie, Tong Wang, Aiying Chen, Bin Gan, Jinchao Song

Summary: This study demonstrated the Ta-induced strengthening of CoCrNi-AlTi MEAs using nanoscale heterogeneous coherent precipitates. The addition of Ta and aging treatments significantly enhanced the mechanical properties of the alloy, including yield strength, ultimate tensile strength, and elongation.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Microstructural evolution and deformation behavior of an interstitial TRIP high-entropy alloy under dynamic loading

Z. Y. You, Z. Y. Tang, B. Wang, H. W. Zhang, P. Li, L. Zhao, F. B. Chu, H. Ding

Summary: The mechanical properties and microstructural evolution of C-doped TRIP-assisted HEA under dynamic loading conditions were systematically investigated in this study. The results showed that dynamic tensile deformation led to an increase in yield strength and a decrease in ultimate tensile strength, with a trend towards increased total elongation. The primary deformation mechanisms shifted from TRIP and TWIP effects to deformation twinning and dislocations. The presence of carbides formed through C-doping hindered dislocation slip and promoted the activation of multiple twinning systems.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Nanoscience & Nanotechnology

Strong resistance to shear instability in multilayered metallic composites by nanoscale amorphous-BCC crystalline interfaces

Feng Qin, Feihu Chen, Junhua Hou, Wenjun Lu, Shaohua Chen, Jianjun Li

Summary: Plastic instability in strong multilayered composites is completely suppressed by architecting nanoscale BCC Nb crystalline-amorphous CuNb interfaces.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)