4.7 Article

Effect of the morphology of solution-grown ZnO nanostructures on gas-sensing properties

期刊

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
卷 100, 期 12, 页码 5629-5637

出版社

WILEY
DOI: 10.1111/jace.15096

关键词

gas sensors; Morphology; recovery time; response; ZnO nanostructures

资金

  1. Basic Science Research Programs through the National Research Foundation of Korea (NRF) - Ministry of Education [2016R1D1A1B03932515, 2017R1D1A1B03029842]
  2. National Research Foundation of Korea [2017R1D1A1B03029842, 2016R1D1A1B03932515] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Despite the great potential of zinc oxide (ZnO) nanostructures as a sensing material for high-performance gas sensors, the correlation between the morphology of ZnO nanostructure and its gas-sensing performance has not been systematically investigated yet. In this work, ZnO nanostructures with controlled morphologies were synthesized by low-temperature solution route and chemical bath deposition method. Thin film gas sensors were fabricated from the nanostructures and the sensor performance such as the response, recovery time, and stability was examined for several gases. It is demonstrated that the gas-sensing performance of a ZnO nanostructure sensor is strongly influenced by its morphology. One dimensional ZnO nanocones are highly promising for practical application to gas sensors, due to their large surface area per unit mass and unique conical structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Hybrid CsPbBr3 quantum dots decorated two dimensional MoO3 nanosheets photodetectors with enhanced performance

Dong Jin Lee, Ganesan Mohan Kumar, Youjoong Kim, Woochul Yang, Deuk Young Kim, Tae Won Kang, Pugazhendi Ilanchezhiyan

Summary: High crystalline MoO3 nanosheets were obtained through a vapor phase epitaxy method and used to fabricate a photodetector with striking photoresponse. Introducing CsPbBr3 quantum dots significantly enhanced the photocurrent of MoO3 devices, leading to high responsivity and broad spectral response from UV to visible light. The study suggests that CsPbBr3 QDs/MoO3 hybrids hold promise for broad band photodetectors and other optoelectronic devices.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2022)

Article Nanoscience & Nanotechnology

A dual-functional flexible sensor based on defects-free Co-doped ZnO nanorods decorated with CoO clusters towards pH and glucose monitoring of fruit juices and human fluids

Muhammad Hilal, Woochul Yang

Summary: In this study, a CoO/Co-doped ZnO heterostructure was formed on a flexible PET substrate at low temperatures through an in situ technique. The heterostructure showed reduced charge transfer resistance, improved corrosion resistance, increased active sites, and enhanced flexibility, making it suitable for highly sensitive, chemically stable, and flexible pH and glucose sensors.

NANO CONVERGENCE (2022)

Article Materials Science, Multidisciplinary

Uniform Metal Sulfide@N-doped Carbon Nanospheres for Sodium Storage: Universal Synthesis Strategy and Superior Performance

Kai Yang, Hao Fu, Yixue Duan, Manxiang Wang, Minh Xuan Tran, Joong Kee Lee, Woochul Yang, Guicheng Liu

Summary: 47 nm-sized ZnS@NCs were successfully synthesized via a one-pot hydrothermal process, and the covalent bonds between the ZnS core and elastic carbon shell significantly improved the mechanical and chemical stabilities of ZnS@NC. ZnS@NC exhibited high reversible capacity and superior rate performance, and this synthesis strategy was also successfully applied to the synthesis of other TMS@NCs.

ENERGY & ENVIRONMENTAL MATERIALS (2023)

Article Engineering, Environmental

Interface engineering via in-situ electrochemical induced ZnSe for a stabilized zinc metal anode

Weiwei Han, Lingyun Xiong, Manxiang Wang, Woncheol Seo, Yuzhen Liu, Syed Taj Ud Din, Woochul Yang, Guicheng Liu

Summary: By using an in-situ electrochemical induction technique to fabricate a ZnSe interface layer on the zinc surface, the zinc anode is endowed with high hydrophilicity and a low nucleation energy barrier, effectively alleviating dendritic growth and side reactions. This method shows promising potential for large-scale energy storage applications.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Multidisciplinary

Inspection of the Defect State Using the Mobility Spectrum Analysis Method

Il-Ho Ahn, Deuk Young Kim, Woochul Yang

Summary: Mobility spectrum analysis (MSA) is used to separate carrier density and mobility of majority and minority carriers in multicarrier semiconductors. In this study, p-GaAs layer is analyzed using MSA to demonstrate its application in defect analysis. Results show that the presence and peak position of defect state can be predicted by comparing the density ratio of minority and majority carriers. DLTS signals dominate around a specific temperature, consistent with the temperature-dependent generation-recombination and thermionic emission peaks.

NANOMATERIALS (2022)

Article Chemistry, Analytical

Straw-sheaf-like Co3O4 for preparation of an electrochemical non-enzymatic glucose sensor

Muhammad Hilal, Wanfeng Xie, Woochul Yang

Summary: A 3D straw-sheaf-like cobalt oxide was prepared without the assistance of template or surfactant using hydrothermal method and inert gas calcination. The material exhibited high crystallinity, large surface area, small pore size, and excellent electrochemical stability, making it suitable for non-enzymatic glucose oxidizing electrodes.

MICROCHIMICA ACTA (2022)

Article Physics, Multidisciplinary

Computational exploration and screening of novel Janus MA2Z4 (M = Sc-Zn, Y-Ag, Hf-Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst

Weibin Zhang, Woochul Yang, Yingkai Liu, Zhiyong Liu, Fuchun Zhang

Summary: Thirteen thermally and environmentally stable Janus MA(2)Z(4) monolayers were identified through high-throughput calculations, with highly concentrated charge carriers and potential applications in electrode materials, optoelectronics, solar cells, and photocatalysis. These monolayers exhibit excellent conductivity, high light absorption, and good light transmittance, making them promising candidates for various applications.

FRONTIERS OF PHYSICS (2022)

Article Chemistry, Multidisciplinary

Indirect Band Gap in Scrolled MoS2 Monolayers

Jeonghyeon Na, Changyeon Park, Chang Hoi Lee, Won Ryeol Choi, Sooho Choi, Jae-Ung Lee, Woochul Yang, Hyeonsik Cheong, Eleanor E. B. Campbell, Sung Ho Jhang

Summary: Nano-scrolls of MoS2 with inner core radii of 250 nm were generated from MoS2 monolayers, and their optical and transport band gaps were investigated. The results showed that the optical and transport properties of the nano-scrolls differ from the original MoS2 monolayers, indicating a new type of quasi-1D nanostructure with modified band gap.

NANOMATERIALS (2022)

Article Engineering, Environmental

Toward highly reversible aqueous zinc-ion batteries: nanoscale-regulated zinc nucleation via graphene quantum dots functionalized with multiple functional groups

Weiwei Han, Hankyu Lee, Yuzhen Liu, Youjoong Kim, Huaqiang Chu, Guicheng Liu, Woochul Yang

Summary: In this study, a novel type of nanosized and functionalized graphene quantum dots (F-GQDs) are decorated on a zinc anode to improve the electrochemical performance. The F-GQDs can regulate the plating/stripping process of zinc and enhance the rate capability and long-term cycling performance when coupled with MnO2 cathodes.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Multidisciplinary

F-Doped Carbon Nanoparticles-Based Nucleation Assistance for Fast and Uniform Three-Dimensional Zn Deposition

Lingyun Xiong, Youjoong Kim, Hao Fu, Weiwei Han, Woochul Yang, Guicheng Liu

Summary: This study successfully achieved reversible and uniform deposition of Zn metal by constructing F-doped carbon nanoparticles (FCNPs) on substrates through plasma-assisted surface modification. The FCNPs acted as nucleation assistors, improving Zn plating kinetics and resulting in uniform Zn deposition. Additionally, the ZnF2 solid electrolyte interface contributed to rapid mass transfer and enhanced Zn reversibility while suppressing side reactions. This ingenious surface modification broadens revolutionary methods for uniform metallic deposition and enables dendrite-free rechargeable battery systems.

ADVANCED SCIENCE (2023)

Article Chemistry, Physical

A mesh cladding-structured Sr-doped LaFeO3/Bi4O5Br2 photocatalyst: Integration of oxygen vacancies and Z-scheme heterojunction toward enhanced CO2 photoreduction

Zhuohong Xie, Woncheol Seo, Syed Taj Ud Din, Hankyu Lee, Changchang Ma, Woochul Yang

Summary: Solar-driven CO2 conversion into chemical fuels using photocatalysts is a sustainable method for renewable energy. However, the low photocatalytic activity is limited by poor photoabsorption, low charge separation efficiency, and sluggish interfacial reaction. To address this issue, a mesh cladding structure of Sr-doped LaFeO3/Bi4O5Br2 photocatalyst with abundant surface oxygen vacancies (OVs) is developed. The optimized photocatalyst with appropriate Sr doping and BOB content shows a considerable methane generation, which is significantly higher than the pristine LFO.

MATERIALS TODAY ENERGY (2023)

Article Chemistry, Physical

Reversible Zn/polymer heterogeneous anode

Lingyun Xiong, Hao Fu, Kai Yang, Ji Young Kim, Ren Ren, Joong Kee Lee, Woochul Yang, Guicheng Liu

Summary: A reversible heterogeneous electrode of Zn-nanocrystallites/polyvinyl-phosphonic acrylamide (Zn/PPAm) with fast electrochemical kinetics is designed to address the poor reversibility of Zn-metal anodes. The electrode utilizes phosphonic acid groups, hydrophobic carbon chains, and weak electron-donating amide groups to ensure structural reversibility, suppress side reactions, and promote Zn2+ transport. The heterostructure and Zn nanocrystallites further enhance electrochemical reactivity. The Zn/PPAm electrode exhibits excellent cycle reversibility and durability in symmetrical cells and fiber-shaped batteries.

CARBON ENERGY (2023)

Article Engineering, Environmental

Ionic accelerator based on metal-semiconductor contact for fast electrode kinetics and durable Zn-metal anode

Hao Fu, Yuzhen Liu, Zhuohong Xie, Youjoong Kim, Ren Ren, Woochul Yang, Guicheng Liu

Summary: A Zn@SiC electrode with an Ohmic contact is reported, which exhibits excellent durability and enhanced electrode process kinetics, and plays a critical role in achieving high-performance aqueous Zn-metal batteries.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Materials Science, Multidisciplinary

High-performance non-enzymatic glucose sensor based on Co3O4/rGO nanohybrid

Ling-Yun Xiong, You-Joong Kim, Won-Cheol Seo, Han-Kyu Lee, Woo-Chul Yang, Wan-Feng Xie

Summary: In this study, Co3O4/reduced graphene oxide (rGO) nanocomposite was successfully used as a modified electrochemical electrode for the detection of trace glucose. The Co3O4/rGO modified electrode exhibited high sensitivity, low detection limit, and fast response time, making it a promising candidate for practical electrochemical biosensors.

RARE METALS (2023)

Article Biotechnology & Applied Microbiology

Chemiresistive ethanol sensors based on In2O3/ZnSnO3 nanocubes

Shu Yan, Shu-Zhe Zhang, Wan-Feng Xie, Ling-Yun Gai, Hui-Min Yuan, Ding Zhang, He Zhang, Xuhai Liu, Woochul Yang, Zong-Tao Chi

Summary: In2O3/ZnSnO3 cubic crystallite composites synthesized through hydrothermal and calcination processes exhibit significant ethanol sensing properties, making them a potential material for constructing high-performance ethanol sensors.

SENSORS AND ACTUATORS REPORTS (2022)

Article Materials Science, Ceramics

Microwave dielectric characterization and densification mechanism analysis of CaO-B2O3-SiO2 glass-ceramic/Al2O3 composites for LTCC applications

Zilong Xiong, Wenzhuo Xue, Mujun Li, Feihu Tan, Yupeng Chen, Hongyu Yu

Summary: In this study, CBS glass/Al2O3 composites were developed for LTCC applications based on a CaO-B2O3-SiO2 (CBS) glass system with a high boron content. The study revealed that the softening of glass and interfacial reaction between the glass and Al2O3 were the two most important factors affecting LTCC's densification process. Real-time shrinkage rate of LTCC during sintering was successfully simulated, and it was proven that the formation of the CaAl2(BO3)O phase played a significant role in reducing glass viscosity and promoting dense structure formation. The resulting LTCC composite exhibited excellent performance for high-frequency applications.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Response of nonstoichiometric pyrochlore composition Nd1.8Zr2.2O7.1 to electronic excitations

Saurabh Kumar Sharma, Vinita Grover, Rakesh Shukla, Abid Hussain, Ambuj Mishra, Pawan Kumar Kulriya

Summary: In this study, the disordering caused by swift heavy ion irradiation in two different compositions of pyrochlore structures was investigated. X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy were used to analyze the samples before and after irradiation. It was found that both compositions underwent amorphization due to irradiation, with a slower rate observed in Nd1.8Zr2.2O7.1. The irradiation-induced modified track region in Nd1.8Zr2.2O7.1 consisted of defect-rich pyrochlore structure, anion-deficient fluorite structure, and amorphous domains.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Influence of ion-induced lattice stress and phase transition on the irradiation resistance of high-entropy ceramics

Jiabei He, Mengshan Song, Ming Yang, Miaomiao Zhu

Summary: This study investigates the influence of ion irradiation on high-entropy ceramics and finds that irradiation-induced lattice rearrangement can improve the radiation resistance of these ceramics.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Multifunctional tantalum disilicide ceramics sintered at high temperature and high pressure

Yajie Yu, Shi He, Zhengang Zhang, Haihua Chen, Peipeng Jin, Binnian Zhong, Linhui Zhang, Liping Wang, Cheng Lu

Summary: Silicide ceramics, including tantalum disilicide (TaSi2), are known for their exceptional physical properties but are limited in practical applications due to their inherent brittleness at room temperature. In this study, we successfully improved the mechanical properties of TaSi2 ceramics and increased their electrical conductivity by modifying the preparation methods and sintering conditions. These findings provide valuable insights for future applications of TaSi2 and the design of advanced ceramic materials.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Exploring the Ln-O bonding nature and charge characteristics in monazite in relation to microwave dielectric properties

Jian Li, Jia Liu, Yongcui Zhang, Wei Sun, Yang Wang, Haitao Wu, Ling Li, Chuanbing Cheng, Yingying Wang, Ke Tan, Futian Liu

Summary: Microstructure design plays a crucial role in regulating the microwave dielectric properties of materials, however, the understanding of frequency temperature stability and related micromechanism remains limited. In this study, a combination of first-principles calculations and experimental observation was used to investigate the correlation among sintering behavior, crystal structure, bonding nature, and microwave dielectric properties of LnPO(4) (Ln = Eu, Pr) ceramics. The research findings systematically clarify the optimized effect and micromechanism of lanthanides on the dielectric properties of monazite ceramics, providing insights into the design and enhancement of microwave dielectric materials.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Effect of fiber orientation on tribological properties of fiber-reinforced C/C-SiC composites mated with ceramic ball

Wenqian Pan, Xizhen Xia, Wei Zhou, Yang Li

Summary: The study investigates the frictional and wear behaviors of carbon fiber-reinforced SiC ceramic matrix composites with different fiber orientations mating with ceramic balls. The results show that fiber orientation significantly affects the friction and wear properties of the composites. Pads with randomly arranged fibers demonstrate better friction stability and lower wear volume, potentially suitable for bearing material applications. The research also explores the factors influencing the formation of continuous tribo-film and identifies abrasive wear and oxidation wear as the dominant wear mechanisms for the friction pairs.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Synthesis and sintering of MAX phases in the Zr-Al-C system

Sergey Nikolaevich Perevislov, Ilya Evgenievich Arlashkin, Valentina Leonidovna Stolyarova

Summary: This paper describes the synthesis and sintering of MAX phases in the Zr-Al-C system. Different mixtures of initial Zr/Al/C and Zr/Al/ZrC powders were used to synthesize Zr2AlC and Zr3AlC2 MAX phases. The highest content of Zr3AlC2 MAX phase was obtained using a component ratio of 1:1.5:2-51.1 vol.% of Zr/Al/ZrC powders.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

B-site internal-strain regulation engineering of tungsten bronze structural dielectric ceramics

Weijia Luo, Xubin Wang, Baiheng Bai, Jianli Qiao, Xingcong Chen, Yongzheng Wen, Jingbo Sun, Lingxia Li, Ji Zhou

Summary: This study successfully establishes the relationship between internal strain and dielectric loss by synthesizing and designing specific structure of tungsten bronze ceramics, and concludes that controlling internal strain can effectively reduce dielectric loss. This research is of great significance for the development of future all-ceramic non-Hermitian devices.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Ultrafast high-temperature sintering of ZrB2

Santanu Mondal, Juan Diego Shiraishi Lombard, Sreenivasulu Gollapudi, Carolina Tallon, Jie-Fang Li, Dwight Viehland

Summary: Ultrafast high-temperature sintering (UHS) is an effective method for rapidly densifying ZrB2 powders. The final grain size increases with longer sintering duration. X-ray diffraction and energy-dispersive spectroscopy show crystalline phase and compositional uniformity in ZrB2 after UHS.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Effects of doping on electronic structure and ion diffusion of Li2FeSiO4

JiaNan Wang, ZhiQiang Li, YongZheng Zhu, Yao Liang, Yan Cui, HuaLong Tao, Bo Song, Alexander Nikiforov, ZhiHua Zhang

Summary: First-principles calculations were performed to investigate the crystal structure, electronic structure, and ion diffusion of sulfur-doped Li2FeSiO4. The results showed that sulfur doping can improve the electronic conductivity and reduce the energy barrier for ion diffusion.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Early structural build-up behavior, setting mechanism, and nanostructure of alkali-activated GGBFS mixtures

Xiaodi Dai, Serdar Aydin, Mert Yuecel Yardimci, Gunter Reekmans, Peter Adriaensens, Geert De Schutter

Summary: This study investigates the rheological behavior, solidification process, and nanostructure changes of sodium hydroxide-activated slag (NH-AAS) and sodium silicate-activated slag (SS-AAS) pastes over time. The results show that NH-AAS and SS-AAS release similar heat and reach a similar reaction degree at their initial setting times, but have different gel structures.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Effect of resting time on rheological properties of glass bead suspensions: Depletion and bridging force among particles

Yanliang Ji, Simon Becker, Zichen Lu, Alexander Mezhov, Regine von Klitzing, Schmidt Wolfram, Dietmar Stephan

Summary: This study reveals the significant influence of resting time on the rheological properties of cement suspensions, which is closely related to non-absorbed polycarboxylate superplasticizers (PCEs) size variation. Adsorbed PCE during resting tends to bridge particles instead of dispersing them, leading to an increased yield stress.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Multiscale understanding the effect of K/Na ratio on electrical properties of high-performance KNN-based ceramics

Yifeng Huang, Xin Wang, Yinchang Ma, Xiang Lv, Jiagang Wu

Summary: This study investigates the effect of K/Na ratio on the phase structure, ferroelectric domains, and piezoelectric properties of potassium sodium niobate (KNN)-based ceramics. It reveals that high Na+ content leads to large ferroelectric domains, while high K+ content results in local polarity heterogeneity and distinct dielectric relaxational behavior. The balanced local polarity and stress heterogeneities contribute to improved piezoelectricity.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Hierarchical porous MgAl2O4 ceramic in situ structured by hollow particles: Low-shrinkage and high-strength

Zun Xia, Yedong Rong, Hao Li, Ye Dong, Hongbo Yu, Jie Xu, Xiuhui Wang, Jinlong Yang

Summary: This study presents the synthesis of hollow MgAl2O4 particles in situ within porous ceramics, resulting in volume expansion and the formation of a hierarchical pore structure, leading to a significant improvement in compressive strength.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

An exploration of lattice transformation mechanism of muscovite single crystal under EB irradiation at 0-1000 kGy

Honglong Wang, Zhiguo Sun, Faming Xia, Chenguang Yang, Xiaoguang Wang, Jintang Li, Linxu Jiang

Summary: In this study, the micro-geometry morphology variation and microstructural transformation mechanism of muscovite crystals under electron beam irradiation were explored. The results revealed the instability of the muscovite lattice under irradiation, as well as the expansion and shrinkage of the lattice with increasing dose. The study also identified changes in chemical structure and other mechanisms involved. These findings are significant for the design of radiation-resistant silicate materials and the manufacturing of electronic components used in the aerospace industry.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2024)