4.5 Article

Regeneration of arsenic spent adsorbents by Fe/MgO nanoparticles

期刊

出版社

WILEY
DOI: 10.1002/jctb.5187

关键词

adsorption; environmental chemistry; heavy metals; nanofiltration; process engineering; water

资金

  1. EU [312643]
  2. PROMES facilities and its researchers/technology experts
  3. European Social Fund (ESF)
  4. Greek State
  5. Ministry of Economy and Competitiveness [RYC-2012-10059, CTQ2013-45433-P, MAT2012-33207]
  6. Alexander von Humboldt Foundation
  7. European Commission (project FutureNanoNeeds)

向作者/读者索取更多资源

BACKGROUND: Over recent decades, there has been increasing global concern over public health impacts related to water pollution with arsenic. With the development of nanotechnology, nanomaterials are being proposed as alternative agents for water treatment. This study focuses on the use of core-shell nanoparticles as secondary receptors able to operate under intense conditions and perform efficient yet environmentally friendly regeneration of conventional adsorbents. RESULTS: Hybrid MgO-coated Fe nanoparticles are proposed, optimized to achieve maximum arsenic uptake under a strong alkaline environment, such as the NaOH stream used to regenerate a typical oxy-hydroxide adsorption column. The magnetic response of these nanocomposites enables their recovery and recirculation by means of an external magnetic field. A scalable laboratory continuous flow system was designed as a proof-of-concept to provide maximum efficiency of the recirculating nanoparticles, as well as complete reuse of the alkaline washing solution. A risk assessment scheme was conducted to evaluate the potential environmental impact of nanoparticle residues by testing the toxicity of arsenic-loaded materials in RTgill-W1 cells and their inertization into concrete building blocks. CONCLUSION: The presented methodology illustrates away to incorporate nanoparticles in water technology taking advantage of their surface activity and magnetic separation potential. (c) 2016 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据