4.7 Article

Redox regulation of the tumor suppressor PTEN by the thioredoxin system and cumene hydroperoxide

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 112, 期 -, 页码 277-286

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2017.07.029

关键词

PTEN; Cumene hydroperoxide; Reactive oxygen species; Redox signaling; Thioredoxin

资金

  1. Korea Research Foundation, Republic of Korea [2015R1D1A1A01059500, 2012R1A1A3018814, 2017R1A6A3A11031114]
  2. Center for Creative Biomedical Scientists at Chonnam National University from Ministry of Education, Science and Technology, Republic of Korea
  3. National Research Foundation of Korea, Republic of Korea [NRF-2012R1A1A1012385]
  4. National Research Foundation of Korea [2012R1A1A3018814, 2015R1D1A1A01059500, 2017R1A6A3A11031114] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Intracellular redox status influences the oxidation and enzyme activity of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN). Cumene hydroperoxide (CuHP), an organic hydroperoxide, is a known tumor promoter. However, molecular targets and action mechanism of CuHP in tumor promotion have not been well characterized. In this study, we investigated the effect of CuHP on the redox state of PTEN in HeLa cells. In addition, the intracellular reducing system of oxidized PTEN was analyzed using a biochemical approach and the effect of CuHP on this reducing system was also analyzed. While PTEN oxidized by hydrogen peroxide is progressively converted to its reduced form, PTEN was irreversibly oxidized by exposure to CuHP in HeLa cells. A combination of protein fractionation and mass analysis showed that the reducing system of PTEN was comprised of NADPH, thioredoxin reductase (TrxR), and thioredoxin (Trx). Although CuHP-mediated PTEN oxidation was not reversible in cells, CuHP-oxidized PTEN was reactivated by the exogenous Trx system, indicating that the cellular Trx redox system for PTEN is inactivated by CuHP. We present evidence that PTEN oxidation and the concomitant inhibition of thioredoxin by CuHP results in irreversible oxidation of PTEN in HeLa cells. In addition, ablation of peroxiredoxin (Prdx) enhanced CuHP-induced PTEN oxidation in cells. These results provide a new line of evidence that PTEN might be a crucial determinant of cell fate in response to cellular oxidative stress induced by organic hydroperoxides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Correction Biochemistry & Molecular Biology

miR-196a provides antioxidative neuroprotection via USP15/Nrf2 regulation in Huntington's disease (vol 209, pg 292, 2023)

Siew Chin Chan, Chih-Wei Tung, Chia-Wei Lin, Yun-Shiuan Tung, Po-Min Wu, Pei-Hsun Cheng, Chuan-Mu Chen, Shang-Hsun Yang

FREE RADICAL BIOLOGY AND MEDICINE (2024)

Article Biochemistry & Molecular Biology

Ribosome-targeting antibiotic control NLRP3-mediated inflammation by inhibiting mitochondrial DNA synthesis

Suyuan Liu, Meiling Tan, Jiangxue Cai, Chenxuan Li, Miaoxin Yang, Xiaoxiao Sun, Bin He

Summary: This study reveals that the antibiotic doxycycline effectively inhibits NLRP3 inflammasome activation by targeting mitochondrial translation and mtDNA synthesis, offering potential for the treatment of NLRP3-related diseases.

FREE RADICAL BIOLOGY AND MEDICINE (2024)

Article Biochemistry & Molecular Biology

Protectin D1 inhibits TLR4 signaling pathway to alleviate non-alcoholic steatohepatitis via upregulating IRAK-M

Hao Liu, Nana Li, Ge Kuang, Xia Gong, Ting Wang, Jun Hu, Hui Du, Minxuan Zhong, Jiashi Guo, Yao Xie, Yang Xiang, Shengwang Wu, Yiling Yuan, Xinru Yin, Jingyuan Wan, Ke Li

Summary: Protectin D1 (PTD1) improves hepatic steatosis, inflammation and fibrosis in a NASH mouse model by inhibiting the activation of TLR4 downstream signaling pathway, possibly through upregulation of IRAK-M expression, suggesting a potential new treatment for NASH.

FREE RADICAL BIOLOGY AND MEDICINE (2024)