4.6 Article

Inhibitor-assisted synthesis of silica-core microbeads with pepsin-imprinted nanoshells

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 4, 期 25, 页码 4462-4469

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6tb00147e

关键词

-

资金

  1. Federal Ministry of Education and Research (BMBF)

向作者/读者索取更多资源

A novel approach for molecularly imprinting proteins, i.e. inhibitor-assisted imprinting, onto silica microspheres is discussed, which provides advanced functional materials addressing prevalent challenges in the field of protein purification and isolation from biotechnologically relevant media. Pepstatin-assisted surface-imprinted core-shell microbeads for the acidic protease pepsin were synthesized serving as selective sorbent materials for solid phase extraction (SPE) applications. The inorganic core, i.e. amino-functionalized silica spheres (AFSS), is prepared by the co-condensation of tetraethylorthosilicate (TEOS) and (3-aminopropyl) trimethoxysilane (APTMS) in water-in-oil (W/O) emulsion, which is then reacted with pepstatin, a selective inhibitor of pepsin, onto the surface of the AFSS via an amide bond. 3-Aminophenylboronic acid (APBA) serves as the functional monomer for establishing nanothin imprinted polymer films, i.e. poly(3-aminophenylboronic acid) (pAPBA) at the surface of the pepstatin-immobilized AFSS via oxidation by ammonium persulfate in aqueous solution in the presence (molecularly imprinted polymer, MIP) and absence (non-imprinted polymer; NIP) of pepsin. Thus obtained core-shell microbeads are packaged into SPE cartridges for evaluating the selectivity for pepsin. Each individual synthesis step is thoroughly characterized using x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET methods. Finally, the imprinted core-shell microbeads indeed provide specific binding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据